ITool Developer’s
Guide

IDL Version 6.1

July, 2004 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Research Systems Inc.

0704IDL61ITD

Restricted Rights Notice

TheIDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions,
and documentation described herein are sold under license agreement. Their use, duplication, and disclosure
are subject to the restrictions stated in the license agreement. Research Systems, Inc., reserves theright to
make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, asto any matter not expressly set forth
in the license agreement, including without limitation the condition of the software, merchantability, or fitness
for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered by the Lic-
ensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransferable license
to reproduce this particular document provided such copies are for your use only and are not sold or distrib-
uted to third parties. All such copies must contain the title page and this notice pagein their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were devel oped using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

L@ AT YT PP 9
WHhaL @r@ ITOOIS? ...ttt e et sneeeesaeseeeneeneeeenee s 10
What isthe iTools Component Framework?ccocceeveveiineese s se e 11
ADOUL thISIMBNUEL ...ttt ee e 12
AboUL the i TOOIS COUE BASEccecveceecese sttt ere s 13
Skills Required to Use the iTools Component Frameworkcccecveeverieciiecieeivennens 15

Part I: Understanding the iTools Component Framework

Chapter 2:

ITOOI System ArChiteCTUIEvviiiiiiiie e 19
OVEIVIBIW <.ttt st b e bbb bbb sb et benbe st e e ens 20
[elo KX @] o L="oi 1Y/ Kol (= I I TF=To =" [21
iTOOI OBJECE IAENLITIEIS ...ocvieeeeiictece et ns 27
[l lele W@ o 1= v i o [1= o VSRS 30

iTool Developer’s Guide 3

RegiStering COMPONENLSocveiuiieieieesiesieeeesieseste st e steste e s e etestesresseeseesesresreesseneesresneens 37
ITOOI MESSAGING SYSLEIM ...ttt ettt st ee s re e neeneeseesne e 40
SYSLEM RESOUICESeeiveeiiieiteeiteesie e st et et teete e ste e te e be e te et e ssaesatesasesneesneesneesneesnaesrensseees 43

Chapter 3:

Data ManagemeNntcoouuiiiiiiiii e 47
OVEIVIBIW ..ottt e sttt saeste s e teese e tessesse e e e sessesseeneeseesseeseensenteseeeneensensessensens 48
[l o Te B T r= 1Y, == = 49
I TOOI DA TYPES ..eveveeeneeiistesteste ettt sttt sttt be st st se et b e b st b e b e b e e et enesee e 50
[l loTe BT r= W @ o] 1= ox i 52
Predefined iITOOl Dala ClaSSESccccceiiriirieresesieeteeste e ste e ee e ste e e ee e sse e e eneesresnens 54
PAIBIMELENS ... ettt b e bbb e et bbb nr e e e s 57
Data TYPE MEECNING ...c.veueeiieiiiiesieeeese sttt n et e 59
DataUpdate MECHANISIMcccueeciiciecieeie ettt e e e s e s ae e e enteesreennas 61
Chapter 4:

Property Management ... 63
About the PropertieS INtEIfaCeccvveece i 64
Property Data TYPES ...ooieeiieieeieeieeie ettt ettt sttt st st be e s ae e she e saeesae e be e beenbeesreenas 67
REQISLENING PrOPEIMIESoouviiecieceee ettt sttt sttt sre e e saesresreene e 70
Property TAeNtITIErS ..o 73
Property AttHDULESc.oceeeeeeceeee e e e e e e 74
Property Aggregationccoii oo se et e ee ettt e e e e e eeeseesne e 77
Property Update MEChBNISIMc.ccueeieiececiese st 79
Properties of the iTOOIS SYSEEMcoiiiee e 80

Part 1l: Using the iTools Component Framework

Chapter 5:

Creating an ITOO!e e 83
OVEIVIBIW ..t seieeee sttt este s e s teese e te st e sae e e e tessesse et e seesseeseensentesteeneensensensennenn 84
Creating aNeW iTOOI ClasS ..o re e ena e e enes 85
Registering aNewW TOOI ClaSSccccoiiriieieirere e 95
Creating an iTool LaunCh ROULINEcccueciieiiicii et 97
Example: SIMPIEITOOlccooiiiieieesree e 102

Contents iTool Developer’s Guide

Chapter 6:

Creating a Visualizationcccoooeiiiieeiiiccceeeecrer e e e e 107
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 108
Predefined iTool Visualization ClaSSEScccerrieeeeieniese e 109
Creating aNew VisualiZation TYPEccceciiieieereie ettt 115
Registering aVisualiZation TYPEcocveceeieeeee ettt see e 130
Unregistering aVisualiZation TYPE ..c.ciecieeeeieie et eeesse e ste e naesresneas 132
Example: Image-Contour ViSUaliZaLIONcccooviieeeieeneie e 134
Chapter 7:

Creating an OpPerationoooocciiiiiiiiiiiiiiee e 139
(@< V= TSP 140
Predefined iITOOI OPEralioNSccoovirieiererisiese et 142
Operations and the UNdo/REAO SYStEIMccocveceiiiriirre e see e sree s 143
Creating aNew Data-CentriC OPEralionccocooeeererereneeiesesesieeeesse e nens 145
Creating aNew Generalized OpPerationccccveceicerceesiesiesee e see e e see e e sree s 158
OPErationS @A IMBCIOSccueiuirieieeeiiriesieieiesie et see b et be e e e e s sne e 173
Registering an OPEratioNcccceeiieieeie e e see e e e e e e sre e e e s e be e teeneesneeeeenees 174
UNregistering an OPEratiONcccccvereerirererieneeese s e e s ee e sseeenens 176
Example: Data Resample OPeErationcccccvveeieeiieeseesee e e e sieesieesre e eseeeseesnee s 178
Chapter 8:

Creating a Manipulatorcooiiiiiee s e e eeeeeneees 185
OVErView Of MaNIPUIBLOTScoiueeririerieeeesie s 186
The Manipulator Creation PrOCESSccceeverrrereeieneseseeree et esee e see e e naeseeseeenes 189
Predefined iTOol ManiPUIALOrSccvcveiieieeiee et sneas 190
Manipulators and the UNdo/RedO SYSEMcccoiiiriieneeenreseeeeeese e 194
Using Manipulator Public INStanCe Dataccvvveeeeerieie e 196
Creating aNew ManiPUIBLOTcooeeieiee e 198
Registering @ ManiPUIBLOLccvieeieieiiecieeiee et e e e et sneensestesneas 214
Unregistering @ ManiPUIELOro.cooeiereeeeee et eneas 216
Example: Color Table ManipUlatorccceevieieeeeeeiese et 217
Chapter 9:

Creating a File REAUEIuuuueiiiiii e 229
(@< V= 230
Predefined iITOOl FIl@ REAESScocvviieciriree e 231

iTool Developer’s Guide Contents

Creating aNew FII@ REAAEYccooviiiiiicee ettt 234
Registering aFile REAAENocoeiee e e 245
Unregistering aFille@ REAAEYc.cov i 246
Example: TIFF File REAAENcooeieeeeee et 248
Chapter 10:

Creating @ File WIILEIuuueiiii i 253
(@< V= S 254
Predefined iITOOl FIIE WIILEIS ...c.ocieie et 255
Creating aNeW FIlE WIILEN ..ot 258
ReGISIENING A FTE WIITEN ..ot 269
Unregistering @ File WITELooceeecece et 270
EXample: TIFF FIHE WIS ..o 272

Part Ill: Modifying the iTool User Interface
Chapter 11:

iTool User Interface Archit@Cturecccccceeeeeeeeiiiiiiiieieeeee s 279
OVEIVIBIW .ttt bttt b et b e b e et e b s b et et e b e ne et 280
USer INLErface ODJECESveeeereiriesieseeer et 282
Chapter 12:

Using iTool User Interface Elementsccccoviriiicciiiiie e, 285
(@< V= T 286
SEAEUS MESSAGESeeviteiiieieste sttt sttt b e sb e e bt b s e b bt e e e sn e e e sneennene s 287
0] £ 289
INFOrMational MESSAJEScociiuirieieieie sttt nne e 291
Chapter 13:

Creating a User Interface ServiCeoooevviviiiiiiiiiiiiiiee e, 293
(@< V= ST 294
Predefined ITOOI Ul SEIVICES ..ot 295
Creating aNEW Ul SEIVICEooi it 297
REQISLENING A UL SEIVICE ...ooviiicticece sttt e 302
Executing aUser INtErfate SEIVICEoo oo e 304
Example: Changing aProperty ValUe ... iieeeiie e 305

Contents iTool Developer’s Guide

Chapter 14:

Creating a User Interface Panelccccovvviiiiciiiiii e, 311
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 312
Creating a Ul Panel INLEITACeccooriiiieiees e 313
Creating Callback ROULINEScccoiieieiese ettt 318
Registering Ul Pan@l ... 320
Example: A SIMPIe Ul Pan€loceooi et s 322
Chapter 15:

Creating a Custom iTool Widget Interfacecccccoeeveiiiiiiciivininnnnnn. 331
About Custom i TOOl Widget INEITACEScccvrerererierieereeeee e 332
Overview: Creating an iTOOl INTEITACEcocvievecece e 335
iTool Widget INterface CONCEPLSovevveerieriirieieeeierie et 338
Creating the Interface ROULINEc.ecciveiiiii et 340
AAAING MENUS ...ttt b e en b e 344
N0 (o [T 0T = 0] 1 o SO 346
Adding @n ITOOI WINUOWcveuiiiiiiiieeieieiesieieeseere ettt 348
AddiNG @SLBIUS BAFocveceieciicee e s e e ettt e e e eeesneesnnenneens 350
Adding aUser Interface Panel ... 351
Handling CallDAaCKSccoeouieecece e e e 352
HaNdling RESIZE EVENLSoouiieieierieeeeese et 354
Handling ShUtdOWN EVENLScccvciiicie et 356
Creating an iTool Launch ROULINEcccoveirinierieinisesieeeesie st 358
Example: a Custom iTOOI INEEITACEccvvveeeeeeie e 360
Appendix A:

Controlling iTools from the IDL Command Linecccccciivvvinnnnee. 379
Overview of iTool Programmatic CONtrolcccvveeveviie i 380
Retrieving an iTool ObjeCt REFEIENCEcceeeeieie e 381
Retrieving Component [AENLITIErScocvvvieeere e 382
Retrieving Property INfOrMBationcccoevireieeienineseseeesesee e 385
Changing Property VAIUESc.coviieieese ettt sttt 389
RUNNING OPEIBLIONS ..ottt eeseesae e eeeseeseeeseenseseenneas 391
Selecting IteMS TN thE ITOOcc.cciieceeece e s 393
Replacing Datain @n iTO0!ccoieeieieiieeeee e e snea 394

iTool Developer’s Guide Contents

Appendix B:

iTool Compound WIdQetSuceeiiiiiieieeeieeeeeeeeeeicee s e e e e eee e 397
Overview: iTools Compound WIAGELScccevvieiieie et 398
LT I I8\ =\ 399
CW _ITPRANEL oot e sttt b e s ee e s 403
CW _ITSTATUSBAR oottt sttt e s te e st et e st e e e e nne e e snte e snreesnneeens 406
CW _ITTOOLBAR ettt sttt et e e sbe e snree s 409
LT I VAT AT N 5 1 414
IO EX ettt 417

Contents iTool Developer’s Guide

Chapter 1:
Overview

This chapter provides an overview of the IDL iTool Component Framework.

What areiTools? 10 AbouttheiToolsCodeBase............ 13
What is the iTools Component Framework? 11 Skills Required to Use the iTools Component
About thisManual 12 Framework 15

iTool Developer’s Guide 9

10 Chapter 1: Overview

What are iTools?

IDL Intelligent Tools, or iToals, are applications written in IDL to perform avariety
of data analysis and visualization tasks. iTools share a common underlying
application framework, presenting afull-featured, customizable, application-like user
interface with menus, toolbars, and other graphical features. Several predefined
iTools are provided along with IDL; you can use these tools to explore and visualize
your data without writing any new code yourself. For information on using the
standard i Tools provided with IDL, see the iTool User’s Guide.

But iTools are more than just a set of pre-written IDL programs. Behind the iTool
system liesthe IDL Intelligent Tools Component Framework — a set of object class
files and associated utilities designed to allow you to easily extend the supplied
toolset or create entirely new tools of your own. This manual will help you
understand the i Tools Component Framework so that you can customize existing
iTools or create entirely new ones.

What are iTools? iTool Developer’s Guide

Chapter 1: Overview 11

What is the iTools Component Framework?

TheiTools component framework is a set of object class definitions written in the
IDL language. It is designed to facilitate the devel opment of sophisticated
visualization tools by providing a set of pre-built components that provide standard
features including:

» creation of visualization graphics

* mouse manipulations of visualization graphics

e annotations

¢ management of visualization and application properties

e undo/redo capabilities

e dataimport and export

e printing

e datafiltering and manipulation

e interface element event handling

In addition, the iTools component framework makesit easy to extend the system with
components of your own creation, allowing you to design atool to manipulate and
display your datain any way you choose.

Advantages of Using the Framework

If you are accustomed to creating user interfaces for your IDL applications using IDL
widgets, using the iTools component framework will shorten your development time
by providing much of the application interface via the standard component building
blocks. In many cases, you are freed entirely from the need to create your own
interface elements, handle widget events, and manage the display of data. Even when
your application calls for additional user interface elements, the framework
eliminates the need for you to manually create those elements that your application
has in common with the standard i Tool interface.

If you are accustomed to using IDL object graphicsin your applications, theiTools
component framework provides a streamlined way of working with the object
graphics hierarchy. Many tasks, such as management of object properties and
manipulation of the abject model, are handled automatically.

iTool Developer’s Guide What is the iTools Component Framework?

12 Chapter 1: Overview

About this Manual

TheiTool Developer’s Guide describes the IDL iTools component framework and
provides examples of its use. After reading this manual, you will understand how to
use the component framework to create your own intelligent tools.

This manual is divided into three parts:
Part I: Understanding the iTools Component Framework

This section describes the iTools component framework in conceptual terms, and
outlines some of the processes you will use in creating new tools using the
framework. While an understanding of the topics in this section may be beneficial as
you develop your own applications, a complete understanding of the way the
framework operatesis not required to begin building your own tools.

Part Il: Using the iTools Component Framework

This section walks you through the process of creating a new i Tool application, either
by extending an existing iTool or by building a new tool from scratch.

Part Ill: Modifying the iTool User Interface

This section discusses the process of adding your own interface elements to an iTool
application.

What this Manual is Not

This manual is not an API reference for the i Tools object classes. Reference
documentation for the iTool classes, methods, and propertiesislocated in the IDL
Reference Guide.

This manual is not a complete description of the object classes that constitute the
iTools component framework. We describe the object classes you will use to create
new iTools, but not necessarily the building blocks from which those classes are
constructed. If you desire a deeper understanding of how the component framework
functions than this manual provides, you can inspect the object class definition files,
which are provided in IDL . pr o source code format inthei t ool s/ f r amewor k
subdirectory of your IDL | i b directory.

See “ Documented vs. Undocumented Classes’ on page 13 for acompl ete explanation
of our approach to documenting the iTool component framework.

About this Manual iTool Developer’s Guide

Chapter 1: Overview 13

About the iTools Code Base

TheiTools component framework iswritten aimost entirely in the IDL language. The
IDL code that implements both the component framework and al of the standard
iToolsincluded with IDL is available for you to inspect, copy, and learn from.

To inspect the iTools code, look inthel i b/ i t ool s subdirectory of your IDL
installation directory. The iTools code base is organized as follows:

* Inthelib/itool s directory you will find code that implements the i Tool
launch routines. These routines can be called directly at the IDL command line
to launch a specific iTool.

e Inthelib/itools/framework directory you will find the coreiTool object
class definitions and utility routines. The classes in this directory define how
the iTools operate; they are made available for your inspection, but they should
not be altered.

e Inthelib/itool s/ conponent s directory you will find derived iTool object
classes. The classes in this directory implement the non-core features of the
iTool toolset asincluded with IDL. You are encouraged to use these classesto
implement your own iTool functionality, either by subclassing from a derived
iTool object class or by modifying a copy of the class definition for a derived
class.

 Inthelib/itools/ui_w dgets directory you will find the IDL code that
creates an iTool user interface using IDL widgets. You may find it useful to
inspect some of these routines if you are creating a side panel or a dialog used
to collect parameter settings for an operation. See Chapter 11, “iTool User
Interface Architecture” for additional information on creating additional user
interfaces for an iTool.

Documented vs. Undocumented Classes

If youinspectthel i b/ it ool s directory and its subdirectories, you will notice that
there are many more classes included in the iTools component framework than are
documented in the IDL Reference Guide and in this manual. Our approach to
documenting the iTools code that isincluded with IDL is asfollows:

¢ |Tool launch routines for iTools included in the IDL distribution are
documented in the IDL Reference Guide. Use of the launch routines for the
pre-built iToolsis discussed in theiTool User’s Guide.

iTool Developer’s Guide About the iTools Code Base

14 Chapter 1: Overview

e ThecoreiTool component framework classes used to build individual iTools,
visualization types, operations, etc. are formally documented in the IDL
Reference Guide and discussed in detail in this manual. If an object class,
method, or property is necessary for the construction of anew iTool or
component of aniTooal, it isformally documented in the IDL Reference Guide
or in this manual. CoreiTool framework classes are located in the
l'i b/itool s/framework subdirectory of the IDL installation directory.

e Supporting iTool component framework classes — those used to implement
the documented component framework classes — are not formally
documented. As noted previoudly, the code for these classesis available for
inspection. Supporting iTool framework classes are located in the
l'i b/itool s/framework subdirectory of the IDL installation directory.

e Derived iTool classes — those used to implement individual iTools and their
features — are not formally documented. These classes are derived from the
formally documented classes, and as such can be understood by referring to the
formal documentation. Derived iTool framework classes are located in the
l'i b/itool s/ conponent s subdirectory of the IDL installation directory.

e iTool user interface routines are not formally documented. These routines use
standard IDL widget programming techniques, and as such can be understood
by referring to the IDL widget documentation. User interface routines are
locatedinthel i b/ i t ool s/ ui _wi dget s subdirectory of the|DL installation
directory.

Warning on Using Undocumented Features

While you are encouraged to inspect the iTools code, and to copy or subclass from
derived classes and user interface routines, be aware that classes and routines that are
not formally documented are not guaranteed to remain the same from one release of
IDL to the next. Keep the following points in mind when implementing your own
iTools:

« RSl will change undocumented supporting classes as necessary to improve the
iTools system.

¢ RSI may aso change undocumented derived classes to fix problems or add
functionality; in these cases, we will make every effort to preserve backwards
compatibility, but thisis not guaranteed.

If you create new iTool classes based only on the formally documented i Tool
interfaces, your tools should operate properly with future releases of IDL. If you base
your tools on undocumented derived classes, minor modifications may be necessary
to ensure future compatibility.

About the iTools Code Base iTool Developer’s Guide

Chapter 1: Overview 15

Skills Required to Use the iTools Component
Framework

TheiTools component framework consists of a set of IDL object classes,
supplemented by utility routines. If you are already familiar with the concepts of
object-oriented programming, or have written programs that use IDL object graphics,
you will find theiTools framework easy to understand and use. The framework
approach means that most of the details of creating a full-featured and usable
application are already taken care of, leaving you free to concentrate on how best to
manipul ate and visualize your data.

If you are familiar with procedural programming in IDL but new to object-oriented
programming, you will find devel oping i Tool s to be a gentle introduction to the topic.
TheiTools framework has been designed to alow IDL users with little or no
experience writing object-oriented programs to easily customize and extend the basic
iTool applications. While some familiarity with the concepts of object-oriented
programming is necessary to successfully develop iTools, you should be able to
create simple modifications of existing tools almost immediately, and more complex
customizations soon thereafter.

iTool Developer’s Guide Skills Required to Use the iTools Component Framework

16 Chapter 1: Overview

Skills Required to Use the iTools Component Framework iTool Developer’s Guide

Part I: Understanding
the ITools Component
Framework

Chapter 2:

ITool System

Architecture

This chapter describes the iTool component framework architecture.

OVEIVIBW ..ot 20
iTools Object Model Diagram 21
iTool Object Identifiers 27

iTool Object Hierarchy

iTool Developer’s Guide

Registering Components 37
iTool Messaging System 40
SystemResources. 43

19

20 Chapter 2: iTool System Architecture

Overview

TheiTool system architecture is designed to maintain a separation between the
functionality provided by an iTool and the graphical presentation layer that reveals
that functionality to an iTool user (the iTool user interface). Such a separation allows
for the creation of different user interfaces for the same underlying functionality;
while the initial iTool user interface has been created using IDL widgets, it is easy to
imagine using other technologies to create an interface to the underlying i Tool
functionality.

To support the goal of enabling different user interfaces for agiven set of iTool
functionality, theiTool architecture includes the following features:

¢ AdesigninwhichasingleiTool object (based on the IDLitTool class) contains
al non-interactive tool functionality. Similarly, asingleiTool object (based on
the IDLitUI class) contains all user interface functionality. Thisdivisionis
clearly visiblein the “iTools Object Model Diagram” on page 21.

¢ Anobject identifier system that provides a platform-neutral way to identify
objects across process and machine boundaries. Additionally, the object
identifier system is designed to work with existing component technologies
such as COM and Java.

« A minimal connection between the non-interactive tool functionality and the
presentation layer. The tool architecture provides asmall set of highly abstract
methods that the tool and presentation layer use to communicate with each
other. This minimal connection means that the presentation layer needs only a
single object reference to the iTool object itself.

¢ A messaging system that allows one component to observe another, receiving
notification messages when the observed component changes in some way.

This chapter describes some of the core ideas of the iTool system: component
inheritance, object identifiers, the iTool system object and the object hierarchy it
contains, the concept of registration, and how information is passed between i Tool
components.

Overview iTool Developer’s Guide

apino sJadojanaq |00] !

welbelq |9po 103[qO sjool!

ITools Object Model Diagram

The following figure shows inheritance among the i Tools component object classes that define the base
functionality of all iTools. The diagram isintended to provide avisual overview of the structure of theiTools,
and to provide a quick indication of the methods and properties avail able to objects of a given class. Seethe
IDL Reference Guide for details regarding the avail able properties and methods of these components.

IDLitIMessaging IDLitParameter IDLitComponent IDL_Container
Atomic " ; ; - -
IDLgrioce! IDLOrwind ow IDLitCommand IDLitContainer IDLitData

Graphic Ohjects

’—D AN Z‘A AN AN Z‘S

IDLitvisualization IDLitvind ow IDLitDataCartainer
IDLitCammandset
]
IDLitManipulataryisual IDLitParameterset
| | |
IDLitReader IDLitwriter [oLtoperation IDLitManipulator IDLitTool IDLitManipulatorCantainer IDLitul
IDLitDataOperation IDLitToolBase [IoLitvanipulatormanager

Figure 2-1: iTools Object Model Hierarchy

21N12211IY2Jy WaISAS |00]1 :z 1a1dey)d

T

22

Chapter 2: iTool System Architecture

Every iTool is constructed using the hierarchy of predefined and documented object
classes shown in the previous figure. Each of these predefined (as opposed to user-
defined) object classes are available to use or customize in your iTool application.
However, thereis no need to create and instantiate the entire hierarchy when creating
acustom iTool object.

Launching an iTool application creates instances of objectsin the iTools class
hierarchy, as well as others subclassed from the predefined classes. Developing an
application that subclasses from the IDLitTool Base class automatically includes the
functionality of parent object classes, such asIDLitTool, and IDLitIMessaging. This
will also include and register manipulator and operation objects that are common
among the predefined iTools. Unwanted items can be unregistered. Other predefined
objects are instantiated as needed. For example, an iTool application may be started
without a data argument. Only when dataisimported into the tool is a predefined or
custom IDLitVisualization object created to contain the data. For instance, an
IDLitVisPlot object is instantiated when data is imported into the iPlot tool, which
may or may not be when the tool isinitiated.

Once the hierarchy of component objects have been instantiated, there is no need to
maintain along list of object references to access and manipulate individual objects.
Each component is assigned an identifier when it isinstantiated; an identifier isa
simple string that can be used to access an object (such asan IDLItVisPlot object) in
order to change properties, apply operations, or make other modifications. See“iTool
Object Identifiers’ on page 27 for details.

The following sections further describe the chain of inheritance followed by the
objects that make up a particular iTool. The classes listed below are subclassed from
the iTool object classes shown in the “iTools Object Model Diagram” on page 21.
With the exception of the atomic graphic objects (listed in “Atomic Graphic Objects’
on page 26), these subclasses are not documented and are subject to change. While
we encourage you to inspect these undocumented subclasses and use them as
examples when creating your own subclasses, we discourage you from subclassing
from them directly.

Note
RSl may add, change, or remove undocumented subclasses of the documented
iTools classes at any time. The following lists may not exactly match the set of
subclasses shipped with any particular version of IDL.

Except for the atomic graphic objects, all of the classeslisted below are written in the
IDL language. Their definitions can be found inthel i b/ i t ool s/ conponent s
subdirectory of your IDL installation. See “About the iTools Code Base” on page 13

iTools Object Model Diagram iTool Developer’s Guide

Chapter 2: iTool System Architecture

23

for additional information about i Tools code and the differences between documented

and undocumented classes.

IDLitVisualization Classes

The IDLitVisualization class provides methods for adding, deleting, and grouping
objects within avisualization. The following predefined classes contain graphic
objects and other visualizations. For example, the IDLitVisPlot isacontainer for plot,
symbol, and selection visual objects aswell as other itemsthat asagroup, provide the
complete visual representation of the plot data. See Chapter 6, “Creating a

Visualization” for details.

» IDLitVisAxis
 IDLitVisColorbar
 IDLitVisContour
 IDLitVisHistogram
« IDLitVisimage
 |DLitVisintVol

» IDLitVislsoSurface
» IDLitVisLegend

» |IDLitVisLight

« IDLitVisLineProfile
» IDLitVisMapGrid
 |IDLitVisPlot

IDLitTool Classes

IDLitVisPlotProfile
IDLitVisPlot3D
IDLitVisPolygon
IDLitVisPolyline
IDLitVisROI
IDLitVisShapePoints
IDLitVisShapePolygon
IDLitVisShapePolyline
IDLitVisSurface
IDLitVisText
IDLitVisVolume

The IDLitTool class provides the iTools system infrastructure used by every iTool.
All of the standard i Tools are based on a subclass of IDLitTool called IDLitToolbase.
The IDLitToolbase class provides al of the base functionality found in the standard
iTools including menu items, file readers and writers, operations, and manipulators.
See “ Subclassing from the IDLitToolbase Class’ in Chapter 5 for more information
on included functionality. See the iTool User’s Guide for information on using

individual iTools.

 IDLitToolContour (iContour tool)

iTool Developer’s Guide

 IDLitToolPlot (iPlot tool)

iTools Object Model Diagram

24 Chapter 2: iTool System Architecture

 IDLitToollmage (ilmage tool) |DLitToolSurface (iSurface tool)
« IDLitToolMap (iMap tool) IDLitToolVolume (iVolume tool)

IDLitData Classes

The IDLitData class stores core IDL datatypes, gets and sets data, and receives
updates regarding data changes. The predefined IDLitData classes listed in the
following table are designed to hold data which can then be displayed in an iTool.
See Chapter 3, “Data Management” for details.

» IDLitDatalDLArray2D |DLitDatal DL Palette
» IDLitDatalDLArray3D * |DLitDatal DL PolyVertex
» IDLitDatalDLImage |IDLitDatal DLVector

 |DLitDatalDLImagePixels

IDLitReader Classes

The|DLitReader class contains predefined file readers that determine the type of data
being accessed, and create an IDLitData object to contain the data. See Chapter 9,
“Creating aFile Reader” for details on creating and using file readers.

* |IDLitReadASCII * |DLitReadJPEG2000
* |IDLitReadBinary * |IDLitReadPICT

* |IDLitReadBMP * |IDLitReadPNG

* |IDLitReadDICOM * |IDLitReadShapefile
* IDLitReadISV » IDLitReadTIFF

* |IDLitReadJPEG * |IDLitReadWAV

IDLitWriter Classes

The IDLIitWriter class contains predefined file writers that export graphics or datato
afile of aspecified type. See Chapter 10, “Creating aFile Writer” for details on
creating and using file writers.

* IDLitWriteASCII * IDLitWriteJPEG
» IDLitWriteBinary IDLitWriteJPEG2000

iTools Object Model Diagram iTool Developer’s Guide

Chapter 2: iTool System Architecture 25

* IDLitWriteBMP * IDLitWritePICT
* |IDLitWriteEMF * IDLitWritePNG
* IDLitWriteEPS » IDLitWriteTIFF
* IDLitWritelSV

IDLitOperation Classes

The IDLitOperation class defines an action on data, or a change to an iTool
visualization. Transaction recording provides undo/redo capabilities. See Chapter 7,
“Creating an Operation” for information on creating a new operation or using
predefined operations.

* IDLitOpBytscl IDLitOpCurveFitting
e IDLitOpConvolution IDLitOpSmooth
Note

There are many additional operations (named with the prefix “idlitop”) in the
I'i b\itool s\ conponent s subdirectory of your IDL installation.

IDLitManipulatorContainer Classes

The IDLitManipulatorContainer class provides a container for a group of

mani pul ators, among which an active manipulator may be set. The following
manipulator containers are predefined. The manipulators held within each predefined
container are described in “ Predefined i Tool Manipulators’ on page 190.

e |IDLitManipArrow « |IDLitManipRotate
¢ |DLitManipRange e |IDLitManipToolbar
IDLitManipulator Classes

The IDLitManipulator class allows the user to select and interact with a visualization
through mouse movements and keyboard events. See Chapter 8, “ Creating a
Manipulator” for information on the following predefined manipulators and creating
anew manipulator.

« |IDLitAnnotateFreehand |IDLitManipRangePan

iTool Developer’s Guide iTools Object Model Diagram

26

¢ IDLitAnnotateLine
 IDLitAnnotateOval

¢ |DLitAnnotatePolygon
* IDLitAnnotateText

¢ IDLitManipAnnotation
 IDLitManipCropBox
 IDLitManiplmagePlane
e IDLitManipLine

¢ |IDLitManipROIFree
 IDLitManipROIOval
 IDLitManipROIPoly
 IDLitManipROIRect
 |IDLitManipRangeBox

Atomic Graphic Objects

Chapter 2: iTool System Architecture

IDLitManipRangeZoom
IDLitManipRotate3D
IDLitManipRotateX
IDLitManipRotateY
IDLitManipRotateZ
IDLitManipScale
IDLitManipSelectBox

I DLitMani pSurfContour
IDLitManipTranslate
IDLitManipView
IDLitManipViewPan
IDLitManipViewZoom

In addition to IDLgrModel and IDLgrwindow objects shown in the “iTools Object
Model Diagram” on page 21, the following IDL objects inherit from

IDLitComponent:

e IDLgrAxis

* |DLgrContour
e |DLgrimage
» IDLgrLight

e IDLgrPlot

« IDLgrPolygon

iTools Object Model Diagram

IDLgrPolyline
IDLgrROI
IDLgrROIGroup
IDLgrSurface
IDLgrText
IDLgrVolume

iTool Developer’s Guide

Chapter 2: iTool System Architecture 27

ITool Object Identifiers

iTool object identifiers are simple strings that uniquely identify individual objects
within the hierarchy of iTool objects in much the same way that a computer file
system identifies files within a hierarchy of files. The object hierarchy (and, by
extension, the object identifiers) also describe where information about objectsis
made visible in the iTool user interface; see “iTool Object Hierarchy” on page 30 for
additional discussion of the iTool hierarchy and the iTool system object.

Besides providing afamiliar, user-readable way to identify objectsin the iTool
system, object identifiers also allow iTool developersto refer to an object without
having to maintain an actual object reference to that object. This ability to use a
lightweight string object to refer to a potentially “heavy” object in the iTool system
makes it possible to maintain a very loose coupling between the objects that
implement an iTool’s functionality and those that implement its user interface. This
allows for object access that can cross process and machine boundaries, paving the
way for the use of theiTool system in more distributed environments.

Note
Object identifiers are not to be confused with object descriptors. See “ Object
Descriptors’ on page 29 for details.

Object identifier strings are assigned when an object classis registered with either an
individual iTool or with theiTool system object. See “Registering Components’ on
page 37 for adiscussion of the registration process.

Fully-Qualified vs. Relative Identifiers

Identifiers can either be fully qualified, meaning that they depict the entire path from
the root iTool system object to the object being identified, or relative, meaning they
depict the path from the root of the current iTool. Fully qualified identifiers begin
with the*/” character, and refer to objectsthat are accessibleto all iTools that become
active during the lifetime of the iTool system object. Relative identifiers do not begin
with a“/” and refer to objects that are accessible only within a specified container
object.

For example, the identifier string
/ DATA MANAGER/ MY DATA

refersto an object named My DATA, located in the system-level DATA MANAGER
container. Because the identifier isfully qualified, the My DATA object isvisibleto
any iTool that is active during the iTool session.

iTool Developer’s Guide iTool Object Identifiers

28

Chapter 2: iTool System Architecture

Similarly, the identifier string
OPERATI ONS/ FI LTERS/ MY FI LTER

refersto an object named My FI LTER, located in a sub-container of the iTool-level
OPERATI ONS container named FI LTERS. Because the identifier is relative, the
MY FI LTER object isvisible only to the current iTool.

Note
Object identifiers are stored as upper-case strings. Spaces are allowed.

Using ldentifiers

Numerous methods defined by i Tools object classes accept object identifiers as
arguments to uniquely identify an object instance. This frees you as a devel oper from
the need to obtain and keep track of an actual object reference for each object you
wish to refer to or modify.

For example, the DoSetProperty method of the IDLitTool object class allows you to
change the value of an object property by supplying the identifier for the object
whose property isto be changed, aswell as the identifier for the property itself.
Similarly, the DoAction method of the IDLitTool class allows you to initiate an
operation simply by supplying itsidentifier.

Retrieving ldentifiers

At times, you may know the identifier of the object you wish to affect. Thisisthe
case when your own code registers an operation, for example; you must supply the
identifier when calling the ITREGISTER routine or Register method. (See
“Registering Components” on page 37 for additional details.)

Other times, you may not know theidentifier of the object you wish to affect. Inthese
cases, you have two options:

1. If your code has access the actual object reference to the object whose
identifier you need, you can use the GetFullldentifier method of the
IDLitComponent object class. See“IDLitComponent::GetFullldentifier” in the
IDL Reference Guide manual for details.

2. If your code does not have access to an object reference, you can use the
Findldentifiers method of the IDLitTool object classto retrieve alist of
identifiers that match a specified pattern. See “IDLitTool::Findldentifiers’ in
the IDL Reference Guide manual for details.

iTool Object Identifiers iTool Developer’s Guide

Chapter 2: iTool System Architecture 29

Proxy Identifiers

Because the location of an object in the iTool object hierarchy corresponds to the
place that object is made visible to iTool users, you may at times want an object to be
located in multiple places in theiTool object hierarchy. For example, the Undo
operation appears in two places in the standard i Tool user interface: under the Edit
menu and on the toolbar. Rather than duplicating the Undo operation object in each of
those placesin theiTool object hierarchy, we can use a proxy mechanism to register
the same object instance with multiple object identifiers. In the case of the Undo
operation, the operation itself islocated in the EDIT subcontainer of theiTool’s
OPERATIONS container, which implies that the operation appears under the iTool’s
Edit menu. A proxy (or aias) to thisobject is created in the EDIT subcontainer of the
iTool’s TOOLBAR container, which places the operation on the toolbar. Only one
instance of the Undo aobject is created, but its action can be invoked from both the
menu and the toolbar.

Proxy identifiers are assigned by the Register method for the object being proxied.
See " Registering Components’ on page 37 for additional details.

Object Descriptors

Object descriptors are iTool objects that contain enough information about a given
object class to create an object of that class when necessary. In many cases, object
descriptors, rather than instances of the objects they create, are stored in the iTool
hierarchy; this approach allows object instances to be created only when needed.
Object descriptors al so manage instances of objectsthat can be re-used by the system,
avoiding the need to create a new instance of an object (such as an operation) each
timeit is used.

Casesin which an iTool developer will need to know about or use object descriptors
rather than object identifiers are very rare. We mention object descriptors here
because they are used extensively in the iTool object hierarchy to expose the
functionality of objects that are created as needed, rather than being created
automatically when the iTool is created.

iTool Developer’s Guide iTool Object Identifiers

30 Chapter 2: iTool System Architecture

ITool Object Hierarchy

TheiTool system isacollection of object class instances organized in a hierarchy of
container objects. The hierarchy serves both to organize the numerous object
instances and to display information about the objects in the iTool user interface. In
most cases, an object’s location in the iTool hierarchy controls where and how the
object is made visible in the user interface.

For example, the Rotate operation object is stored in the ilmage iTool’s object
hierarchy with the object identifier

OPERATI ONS/ OPERATI ONS/ ROTATE
From this identifier we can deduce two things:

1. The Rotate operation object is stored in the iTool’s object hierarchy in the
OPERATIONS container within the OPERATIONS container.

2. TheRotate operation will be displayed in theiTool’s widget interface under the
Operations menu.

iTool System Object

TheiTool system object contains and provides a single point of accessto all objects
managed by theiTool system. Only one instance of the iTool system aobject can exist
inagiven IDL session; it is created automatically when any iTool is created.

Note
AsaniTool developer, thereis no need for you to create or otherwise interact with
the system object yourself. This discussion of the structure of the system object is
included solely to help you understand the organization of iTool objects.

TheiTool system object is asubclass of the IDLitContainer object, which provides
functionality to manage a hierarchy of container objects viatheir object identifiers.

iTool System-Level Hierarchy

Astheroot of theiTools environment, the iTool system object has the unique object
identifier of “/”. All fully qualified object identifiers begin with this reference to the
system object, providing a global location on which to base alocation in the iTools

hierarchy.

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 31

The hierarchy contained by the iTool system object includes the following containers:
/TOOLS

This container holds references to all active iTools.

/ICLIPBOARD

This container holds items that are on the local system clipboard.

/IREGISTRY

This container holds object descriptors for the iTool object classes that are registered
with the system object. Individual iTools, Visualization types, and User Interface
types can al be registered with the system object; other iTool object types are
registered only with the individual i Tool to which they belong. Objects that are
registered with the system object are available for usein the IDL MAIN execution
context — that is, these objects are available at the IDL command line.

/IREGISTRY/TOOLS

This container holds the object descriptors for the individual iTools available in the
system. All iTools must be registered with the system object.

/IREGISTRY/VISUALIZATIONS

This container holds the object descriptors for the visualization types registered with
the system object. Visualization types that are registered with the system object are
availableto all iTools, and thus allow users to create visualizations via the
OVERPLOT keyword to an iTool launch routine even in cases where the appropriate
visualization typeis not registered with the current iTool. Registered visualizations
typesaredisplayed inalist intheiTool Insert Visualization dialog. See Chapter 6,
“Creating a Visualization” for more on visualization types.

/REGISTRY/WIDGET INTERFACE

This container holds alist of available user interface routines that are available to the
system. In the initial release of the iTool system, only one user interface exists. By
providing the capability to choose from alist of interfaces, however, different
interfaces can easily be “plugged in” to theiTool framework in the future.

/IDATA MANAGER

This container holds the data objects that have been imported into or created by the
iTool system. Since the data manager container is system-scoped, al datain the
system isavailableto all iTools.

iTool Developer’s Guide iTool Object Hierarchy

32 Chapter 2: iTool System Architecture

iTool Objects

Individual iTool tool objects contain all objects that are directly associated with a
particular instance of a particular iTool. Any number of tool objects can exist; their
unique identifiers are found in the /TOOLS container of the iTools system object.

AsaniTool developer, you will use both the tool’s object reference and its object
identifier inside your code.

If you are using command-line style procedures and functions to control an existing
iTool from non-iTools code, you can retrieve the tool object identifier and object
reference using the ITGETCURRENT routine.

iTool-Level Hierarchy

Each individual iTool (held in the /TOOLS container of the system object) has a sub-
hierarchy of tool-level containers. For example, every iTool has a container named
OPERATIONS containing objects that affect data. An operation named MyOperation
registered for an iTool named MyTool has two possible object identifiers:

/ TOOLS/ MYTOOL/ OPERATI ONS/ MYOPERATI ON
and

OPERATI ONS/ MYOPERATI ON
Thefirst identifier is fully qualified; the second isrelative to the MyTool object.

The object identifier hierarchy of each individual iTool includes the following
containers:

FI LE READERS

FI LE WRI TERS

MANI PULATORS

COPERATI ONS

TOOLBARS

W NDOW

W NDOW VI EW

W NDOW VI EW VI SUALI ZATI ON LAYER

W NDOW VI EW VI SUALI ZATI ON LAYER/ DATA SPACE
W NDOW VI EW VI SUALI ZATI ON LAYER/ DATA SPACE/ VI SUALI ZATI ON
W NDOW VI EW ANNCTATI ON LAYER

W NDOW VI EW ANNCTATI ON LAYER/ ANNOTATI ON

FILE READERS

A file reader isan iTool component object that contains the information necessary to
open afile and read its data into the iTools data manager. The FILE READERS
container holds the object descriptors of file readers registered with the individual

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 33

iTool. Default properties of file readers can be set interactively viathe System
Preferences dialog. See Chapter 9, “ Creating a File Reader” for more on file readers.

For example, the relative identifier for the ASCII file reader is:
FI LE READERS/ ASCI | TEXT

FILE WRITERS

A filewriter isan iTool component object that contains the information necessary to
create afile from data stored in the iTools data manager. The FILE WRITERS
container holds the object descriptors of file writers registered with the individual
iTool. Default properties of file writers can be set interactively viathe System
Preferences dialog. See Chapter 10, “Creating a File Writer” for more on file writers.

For example, the relative identifier for the Windows Bitmap file writer is:
FI LE WRI TERS/ W NDOAS Bl TMAP

MANIPULATORS

A manipulator isaniTool component object that performs some action on a
visualization selected in an iTool. The MANIPULATORS container holds the object
descriptors of manipulators registered with the individual iTool. Default properties of
manipul ators can be set interactively viathe System Preferences dialog. See Chapter
10, “Creating a Manipulator” for more on manipulators.

For example, the relative identifier for the Rotate manipulator is:
MANI PULATORS/ ROTATE

OPERATIONS

An operationisaset of IDL procedure, function, and method calls that acts on either
adataitem or on the iTool itself. The OPERATIONS container holds the object
descriptors of operations registered with the individual iTool. Registered operations
appear in the Oper ations menu of theiTool; default properties of operations can be
set interactively viathe System Preferences dialog. See Chapter 7, “ Creating an
Operation” for more on operations.

The object identifier hierarchy rooted at OPERATIONS is displayed in the iTools
Operations Browser in atree view. The hierarchy may contain multiple levels; the
levels are used to organize the individual operationsin the i Tools Operations menu
and in the Operations Browser. For example, the relative identifier of the File Open
operationis:

OPERATI ONS/ FI LE/ OPEN

iTool Developer’s Guide iTool Object Hierarchy

34

Chapter 2: iTool System Architecture

Note that operations that appear in the iTool Operations menu repeat the identifier
OPERATIONS. Thefirst instance specifies that the object is stored in the Operations
container, the second specifies that it appears in the Operations menu. For example,
the relative identifier for the Statistics operation is:

OPERATI ONS/ OPERATI ONS/ STATI STI CS
TOOLBAR

A toolbar is an iTool component object that contains information about buttons that
should be displayed in theiTool’s main interface. The TOOLBAR container holdsthe
object descriptors of operations, manipulators, and annotations that are exposed via
the iTool’s toolbar. In most cases, these objects are proxies of objects held in other
containers. For example, the File Open operation is held by the FILE subcontainer of
the OPERATIONS container; it is also exposed (via a proxy) on theiTool toolbar as:

TOOLBAR/ FI LE/ OPEN
WINDOW

A window isan iTool component that holds (indirectly) the actual graphics object
hierarchy displayed in the iTool window. It isarepresentation of an on-screen areaon
adisplay device that serves as a graphics destination. Each window contains one or
more views. The relative identifier of awindow is aways:

W NDOW

The object hierarchy rooted at the WINDOW is displayed in the iTools Visualization
Browser in atree view. The objectsin the hierarchy correspond to the levels shown in
the Visualization Browser view.

VIEW

A view isan iTool component that represents a rectangular area in which graphics
objects are drawn. Each view contains one or more visualization layers and one or
more annotation layers. For example the relative identifier of thefirst view in a
window container is:

W NDOW VI EW 1
VISUALIZATION LAYER

A visualization layer is an iTool component that contains visualizations. Each
visualization layer contains zero or more data spaces. For example, the relative
identifier of the visualization layer in the first view in window container is:

W NDOW VI EW 1/ VI SUALI ZATI ON LAYER

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 35

DATA SPACE

A dataspaceisaniTool component that manages the data range, transformation
matrix, and other data-centric properties of visualizationsin avisualization layer.
Each data space contains one or more visualizations. For example, the relative
identifier of the second data space in the visualization layer in thefirst view in
window container is:

W NDOW VI EW 1/ VI SUALI ZATI ON LAYER/ DATA SPACE_1

Note
Data space numbering is zero-based — that is, the first data space created is number
zero. The object identifier for the first data space, however, does not include the
number. Identifiers for additional data spaces do include the number.

A visualization isagroup of component objects that are displayed to theiTool user in
the main iTool window. Examples of visualizations are plots, surfaces, contours, €etc.
For example, therelative identifier of the first plot visualization in thefirst data space
in the visualization layer in the first view in window container is:

W NDOW VI EW 1/ VI SUALI ZATI ON LAYER/ DATA SPACE/ PLOT

Note
Visualization numbering is zero-based — that is, the first visualization of a specific
type created within a data space is number zero. The object identifier for the first
visualization, however, does not include the number. Identifiers for additional
visualizations of the same type within the same data space do include the number.

Visualizations may be containers themselves, containing other visualizations. The
Axisvisualization is an example; it contains all of the individual axesinserted into a
given data space.

ANNOTATION LAYER

An annotation layer is an iTool component that contains annotations. Each
visualization layer contains zero or more annotations. For example, the relative
identifier of the annotation layer in the first view in window container is:

W NDOW VI EW 1/ ANNOTATI ON LAYER

An annotation is a graphical component that can be added to the main iTool window
by the iTool user in an interactive operation. Examples of annotations are text, lines,
polygons, etc. For example, the relative identifier of the first text annotation in the
first annotation layer in the first view in window container is:

iTool Developer’s Guide iTool Object Hierarchy

36 Chapter 2: iTool System Architecture
W NDOW VI EW 1/ ANNOTATI ON LAYER/ TEXT

Note
Annotation numbering is zero-based — that is, the first annotation of a specific type
created within a data space is number zero. The object identifier for the first
annotation, however, does not include the number. Identifiers for additional
annotations of the same type within the same data space do include the number.

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 37

Registering Components

Registering an object class links the file containing the IDL code that defines the
object (an iTool, avisualization type, an operation, etc.) with the object identifier.
Objects can be registered either with the iTool system object (in which case their
identifiers are fully qualified) or with anindividual iTool class (in which case their
identifiers are relative to the iTool or to a specific container within the tool).

When an object is registered, it is not immediately instantiated. Instead, the
information required to create the object is saved in an object descriptor and placed in
the appropriate location in the iTool hierarchy. Later, when the functionality
contained in the object is needed, the object descriptor either instantiates the object or
provides areference to an existing instance of the object.

Registration Methods

Objects are registered using the ITREGISTER procedure (to register the object with
the iTool system object) or by calling a Register method on an individual iTool
component object.

Registering Objects with the System Object

Individual iTools, visualization types, and user interface types can be registered with
theiTool system object. Of these:

e individual iTools must be registered with the system object before they can be
created and displayed.

e visudlization types may be registered with the system object, but can also be
registered with aniTool. Visualization typesthat are registered with the system
object will be availableto all iToolsviathe Insert Visualization dialog.

e user interface types must be registered with the system object; however,
creation of new user interfacesis arare and complex occurrence.

To register an object with theiTool system object, use the ITREGISTER procedure.
See“ITREGISTER” inthe IDL Reference Guide manual for details and “ Registering
aNew Tool Class’ on page 95 for an example using ITREGISTER.

Registering Objects with an iTool

Visualization types, operations, manipulators, file readers, and file writers can be
registered with anindividual iTool. Of these, all must be registered with an individual

iTool Developer’s Guide Registering Components

38

Chapter 2: iTool System Architecture

iTool except for visualization types, which may have been registered with the i Tool
system object.

Note
Many operations, manipulators, file readers, and file writers are registered by the
IDLitToolbase class. If you create a new iTool based on this class, these features
will be registered automatically. See “ Subclassing from the IDLitToolbase Class’
on page 92 for details.

Tip
If you want some, but not al, of the functionality exposed by the IDLitToolbase
class, you may find it useful to subclass from IDLitToolbase and unregister one or
more features. See the sections on unregistering items in the chapters devoted to
creating operations, file readers, and file writers.

To register an object with an individual iTool, use one of the Register methods of the
IDLitTool class. Register methods exist for each type of object that can be registered
(IDLitTool::RegisterOperation for operations, for example). A call to aregistration
method looks something like this

sel f->Regi ster bj ect, hjectName, Object_C ass_Nane

where Object is one of the object types that can be registered (Visualization,
Operation, Manipulator, FileReader, or FileWriter), ObjectName isthe string you will
use when referring to the object, and Object_Class Nameisastring that specifiesthe
name of the class file that contains the object’s definition.

See the Register methods under “IDLitTool” in the IDL Reference Guide manual for
additional details, and “ Registering a Visualization Type” on page 130, “Registering
an Operation” on page 174, “ Registering a File Reader” on page 245, and
“Registering a File Writer” on page 269 for examples.

Specifying Object Identifiers

You can use the IDENTIFIER keyword to any of the Register methods to specify an
object identifier for the registered object, and thus specify the object’s location in the
iTool object hierarchy and in the user interface. If you do not specify a value for the
IDENTIFIER keyword, a suitable object identifier will be constructed based on the
type of object being registered and the specified ObjectName.

Proxy Registration

You can also register an object as a proxy (or alias) to another object that has already
been registered. Registering an object as a proxy places the proxy object in the iTool

Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 39

hierarchy in the specified place, but actually calls the original object when a user
requests the proxied object. To register a proxy object, specify an object identifier
string as the value of the PROXY keyword to the Register method. For example, the
following call to the RegisterOperation method places a proxy to the Undo object
stored in theiTool hierarchy under OPERATI ONS/ EDI T/ UNDOIn the hierarchy under
TOOLBAR/ EDI T/ UNDC:

sel f->Regi sterperation, 'Undo', PROXY = '(perations/Edit/Undo', $
| DENTI FI ER = ' Tool bar/ Edi t / Undo'

iTool Developer’s Guide Registering Components

40 Chapter 2: iTool System Architecture

ITool Messaging System

Notifications are messages sent from one iTool component to one or more observer
components. The iTool messaging system provides a unified way for components to
notify each other of important changes; it is quite general, and can be used to send
messages related to any type of change. Some exampl es:

« Visualizations send notifications when components of the visualization are
selected or unselected.

« Notifications are issued when the user changes the value of a property. All
visualizations or operations that depend on the value of that property are
automatically notified.

Note
Messaging functionality is provided mainly by the IDLitTool and IDLitUl objects,
using the interface defined by the IDLitlMessaging object.

In many cases, the iTool messaging system is transparent to you as an i Tool
developer; you may never need to create code that uses the messaging system. The
main exception to thisruleis the creation of user interface panels (discussed in
Chapter 14, “Creating a User Interface Panel”), but there may be other instancesin
which the notifications sent by theiTool framework itself do not meet your needs and
must be augmented by your own message generation and handling code.

Sending Notifications

To send a notification, an iTool component calls the IDLitIMessaging::DoOnNotify
method, providing the object identifier of the component that is sending the
notification, a string that uniquely identifies the message being sent, and any value
associated with the message. The method call looks like:

bj - >DoOnNot i fy, 1dOriginator, |dMessage, Val ue

where Obj is the object calling the DoOnNotify method, IdOriginator istheiTool
component object identifier string of the component that changed, IdMessageisa
string that uniquely identifies the change, and Value is the value associated with
|dMessage.

The DoOnNotify method is available to most iTool components, since all
components subclass from the IDLitIMessaging class either directly or indirectly.

See“IDLitIMessaging::DoOnNotify” in the IDL Reference Guide manual for details.

iTool Messaging System iTool Developer’s Guide

Chapter 2: iTool System Architecture

41

The IdOriginator argument is generally the object identifier of an iTool component
object, but it can be any string value.

Notification Messages

The value of the |dMessage argument to the DoOnNotify method is a string val ue that
must uniquely identify the message being sent. iTool components and callback
routines that process notification messages use the value of the IldMessage string to
determine what action to take when a message arrives from an observed component.

When you call the DoOnNotify method yourself, use caution in choosing the value of
the IdMessage string. If the string you choose conflicts with a message being sent by
another iTool component, the message-handling routines may be activated at the

wrong time.

Standard iTool Messages

Thefollowing isalist of notification messages sent by components that are part of
the standard i Tool distribution:

Message String

Meaning

SELECTED
UNSELECTED

The selection state of an item being watched has
changed. Value contains the object identifier of the
component whose selection changed.

SELECTIONCHANGED

The selected item within the current iTool changed.
Value contains an empty string.

ADDITEMS A call to the Add, Move, or Remove method of an

MOVEITEMS IDLitContainer that supports the IDLitIMessaging
interface is made. Value contains the object identifier

REMOVEITEMS of theitem that was added, moved, or removed.

SETPROPERTY The value of a property has been changed on a
component. In some cases, Value contains the
identifier of the property that changed.

SENSITIVE The SENSITIVE property of a component has

UNSENSITIVE changed. Value contains an empty string.

Table 2-1: Standard iTool Messages.

iTool Developer’s Guide

iTool Messaging System

42 Chapter 2: iTool System Architecture

Observers

To watch for notifications from an iTool component, an iTool component calls the
IDLitIMessaging::AddOnNotifyObserver method, providing the object identifier of
the component that is watching and the object identifier of the object being watched
as arguments. The method call looks like:

bj - >AddOnNot i fyObserver, |dObserver, |dSubject

where Obj is the object calling the AddOnNotifyObserver method, 1dObserver isthe
iTool component object identifier string of the component that is watching for
notification messages, and IdSubject is a string value identifying the item that
IdObserver isinterested in. Thisis normally the object identifier of an iTool
component object, but it can be any string value.

Note
When writing a user interface panel, the |dObserver argument contains the object
identifier of a user interface adaptor created by a call to the RegisterWidget method
of the IDLitUI class. See “Creating a Ul Panel Interface” on page 313 for details.

iTool Messaging System iTool Developer’s Guide

Chapter 2: iTool System Architecture 43

System Resources

This section contains information on resources used by the iTool system.
lcon Bitmaps
Some iTool components have associated icons. Icons for iTool components are

displayed in the tree view of a browser window.

Bitmaps used asiconsin the iTool system must be either . bnp or . png files. The
images contained in icon bitmap files can be either True Color (24-bit color) images
or paletted (8-bit color) images.

Note
There are different requirements for bitmap images that will be displayed on button
widgets. See “Using Button Widgets’ in Chapter 30 of the Building IDL
Applications manual for details.

By default, bitmap files for icons used by theiTool system are stored in the bi t maps
subdirectory of ther esour ce subdirectory of the IDL distribution. If anicon’'s
bitmap fileislocated in this directory, specify the base name of the file— without the
filename extension — as the value of the ICON property of the component. For
example, to usethefilear r ow. bnp, located in ther esour ce/ bi t maps
subdirectory of the IDL distribution, specify the value of the ICON property as
follows:

ICON = "arrow

If you include the filename extension when setting the ICON property, the iTool
system assumes that the specified value is the full path to the bitmap file. For
example, to usethefilenmy_i con. png, stored in the directory / home/ nydi r asan
icon, specify the value of the ICON property as follows:

I CON = '/ hone/ nydi r/ my_i con. png'

If you are distributing your iTool code to others, you may want to specify a path
relative to the location of your code for the icon bitmap files. To retrieve the path to
the file containing code for a given routine, you could use code similar to the

following:
Use ny own |con bitmap
i conNanme = 'ny_i con. png'
routi neName = 'nyVisual i zati onType__defi ne'

routinel nfo = ROUTI NE_I NFQ(routi neNane, / SOURCE)
path = FlI LE_DI RNAME(routi nel nfo. path, /MARK DI RECTORY)

iTool Developer’s Guide System Resources

44

Chapter 2: iTool System Architecture

i conPath = path + iconName

This code uses the ROUTINE_INFO function to retrieve the path to the file specified
by the string r out i neNane. It then extracts the directory that contains the file using
the FILE_DIRNAME function, and concatenates the directory name with the name
of the bitmap file contained in the string i conNane.

Note
The routine specified by routineName must have been compiled for the
ROUTINE_INFO function to return the correct value.

Including this code in aroutine and setting the ICON property equal to the variable
i conPat h provides a platform-independent method for locating bitmap filesin a
directory relative to the directory from which your iTool code was compiled.

If the value of the ICON property is not set and the iTool system needsto display an
bitmap to represent a component, thefiler esour ce/ bi t maps/ new. bnp is used.

Help System

TheiTool system allows the user to select “Help on Selected Item” from the Help
menu (or, in the case of the Operations and System Preferences browsers, from the
context menu) to display online help for the selected item.

Note
Helpfor iTool itemsis provided viaacall tothe IDL ONLINE_HELP procedure. It
is beyond the scope of this chapter to discuss the creation of help files suitable for
display by ONLINE_HELP; please see Chapter 20, “Providing Online Help For
Your Application” in the Building IDL Applications manual for additional
information.

Information about the topic to be displayed by ONLINE_HEL P is contained in an
XML format file namedi dl i t hel p. xnl , located in the hel p subdirectory of the
IDL distribution.

The format for ahelp entry is:

<Topi c>
<Keywor d>hel pKeywor d</ Keywor d>
<Li nk type="MSHTMLHELP" >cont ext Nunber </ Li nk>
<Link type="PDF" book=bookNane>pdf Desti nati on</Li nk>
<Link type="HTM.">htm Fi | e</ Li nk>
</ Topi c>

Where;

System Resources iTool Developer’s Guide

Chapter 2: iTool System Architecture 45

* helpKeyword istheiTool object class name of the selected object. There can
be multiple <keywor d> entities for a given <Topi ¢>, but they must all
precede any <Li nk> entities.

e contextNumber is an integer used by the Microsoft Windows HTMLHelp
viewer to select atopic from the specified . chmor . hl p file.

« pdfDestination isastring used by the Adobe Acrobat Reader software to select
atopic from the specified . pdf file.

 htmlFileisastring that specifies the name of an HTML file to display in the
default browser.

* bookNameis an optional attribute that specifies the name of the file that
contains the HTMLHelp contextNumber or the pdfDestination specified as the
value of the <Li nk> entity.

Thet ype attribute of the <Li nk> entity isrequired, and can have one of the
following values:

« MSHTMLHELP
- PDF
« HTML

If morethan one <Li nk> entry ispresent, IDL will choose which to display based on
the platform; on Windows platforms, the <Li nk> entity with the type attribute set to
MSHTMLHELP will be used, on Unix platforms, the <Li nk> entity with the type
attribute set to PDF will be used. If the appropriate platform-specific <Li nk> is not
present, thefirst <Li nk> entity of atype that can be displayed on the current platform
will be used.

iTool Developer’s Guide System Resources

46

System Resources

Chapter 2: iTool System Architecture

iTool Developer’s Guide

Chapter 3:

Data Management

This chapter describes the iTool data management system.

OVEIVIBW ..ot 48
iTool DataManager 49
iTool DataTypescovvvnn.. 50
iTool DataObjects 52

iTool Developer’s Guide

Predefined iTool DataClasses 54
Parameters 57
DataTypeMatching 59
DataUpdate Mechanism 61

47

48 Chapter 3: Data Management

Overview

TheiTools system is designed to turn raw data— numbers stored in computer
memory — into visualizations that convey information to the viewer. Using data to
create avisual display requires some way to route each piece of datato the
appropriate part of the algorithm that displaysit. In the terminology used by the iTool
system, each dataitem must be associated with a parameter of a visualization.

TheiTools system manages the relationship between data and the visualizations that
display data viatwo mechanisms: iTool data types and parameter data types. The
iTool datatypeisaproperty of an IDLitDataobject (or of an object that inherits from
the IDLitData object); it can be any valid scalar string. iTool data types are described
in detail in “iTool Data Types’ on page 50. Parameter data types are assigned when a
visualization object registers its parameters with the iTool system; they also can be
any valid scalar string. Parameter data types are described in “ Parameters’ on

page 57.

Note
iTool operations, which do not support the concept of parameters or parameter
names, determine whether they can act on a given data object solely on the basis of
theiTool datatype.

TheiTool datatype and parameter data types are used to match up data objects with
visualizations that need datato display. See “Data Type Matching” on page 59 for a
description of how matches are made.

This chapter describes data-management tasks undertaken by the iTool devel oper.
Interactive users manipulate data using a graphical interface known astheiTool Data
Manager; this interface allows the user to select and import data items into the iTool
system and to manually associate data items with parameters. See Chapter 2,
“Importing and Exporting Data” in theiTool User’s Guide manual for acomplete
description of the Data Manager and its use.

Overview iTool Developer’s Guide

Chapter 3: Data Management 49

ITool Data Manager

Dataimported into the iTool system is stored in a separate data object hierarchy that
isavailableto all iTools. When adataitem is placed in the data manager hierarchy,
whether interactively by auser or automatically by some operation of an iTool, the
dataitem isimmediately visible to all iTools. The hierarchy of the data manager
reflects the hierarchy of the data containers (IDLitDataContainer and
IDLitParameterSet objects) it holds.

Unless you are creating new data items within an iTool operation, it is unlikely that
you will need to add data to (or remove data from) the data manager yourself.
Addition of dataitemsto the data manager is handled automatically if datais
imported viaany of the standard i Tool dataimport mechanisms (choosing Open from
the File menu, or clicking an Import button in the Data Manager user interface).

Adding Data to the Data Manager

To add an IDLitData, IDLitDataContainer, or IDLitParameterSet object to the data
manager, call the IDLitContainer::AddByldentifier method on your iTool object with
theidentifier string' / Dat a Manager' (note that identifier strings can include
spaces, as between the words “Data” and “Manager”):

; Create an |DLitDat athj ect
oData = OBJ_NEW ' IDLitData', nyData, |DENTIFIER = 'Cool Data')

; Get a reference to the current iTool object.

; (The CGetTool nethod is inherited fromthe |DLitl Messaging
; class.)

oTool = self->GetTool ()

; Add the data object to the data manager
oTool - >AddByl dentifier, '/Data Manager', oData

This results in the oData data object being stored in the data manager with the
identifier ' / Dat a Manager/ Cool Data'.

See “iTool Object Identifiers’ on page 27 for additional information on identifier
strings.

Removing Data from the Data Manager

To remove data from the data manager, call the IDLitContainer::RemoveByldentifier
method on your iTool object with the full identifier string used to add the data object:

oTool - >RenpveByl dentifer, '/Data Manager/ Cool Data'

iTool Developer’s Guide iTool Data Manager

50 Chapter 3: Data Management

iITool Data Types

Every iTool dataitem (IDLitData object or IDLitDataContainer object) has an
associated i Tool data type. TheiTool datatype of a dataitem is specified viathe
TY PE property of the data object, which can contain any scalar string.

Note
Do not confuse iTool data types with IDL’s inherent data types — integers and
floating-point integers of various sizes and precisions, strings, structures, pointers,
and object references. iTool data types are used only by the iTool system when
matching data objects with the parameters expected by avisualization or operation.
IDL datatypes describe how avalue or values are stored in computer memory.
iTool data types need not correspond directly to an IDL datatype.

iTool datatyping alows the iTool system to match up data objects with visualization
parameters even if the data objects have not been explicitly associated with the
visualization parameters. Similarly, an iTool operation may apply only to specific
forms of data; theiTool data typing mechanism allows an operation to “see” only
data of the appropriate type.

Composite Data Types

Because I DLitData objects can be collected in IDLitDataContainer objects (and, by
extension, I DLitParameterSet objects), it is possible that data objects with different
iTool data types will be collected in asingle container. The iTool data typing system
allows these heterogeneous data sets to be named with unique i Tool data types that
reflect the contents of the container. For example, you might define a data container
that contains IDLitData objects with the iTool data types of IDLVECTOR and
IDLARRAY 2D with your own iTool datatype, suchasMY_PLOT.

Data Types of iTool Components

Since theiTool datatype of adataitem can be any scalar string value, it isup to the
iTool developer to ensure that a data object assigned a given iTool datatype contains
the data expected by visualizations and operations that accept that type.

Visualizations or operations that accept an iTool datatype are written to act on data
items that have specific IDL datatypes (or collections of specific IDL datatypes, in
the case of compound data types). If the data object contains datain aformat not
expected by the visualization or operation, errors or unexpected behaviors may result.

iTool Data Types iTool Developer’s Guide

Chapter 3: Data Management 51

Table 3-1 liststhe iTool data types defined by the standard i Tools included with IDL.
You should avoid using these iTool data type names when defining data objects that
do not match the contents listed here; if data objects with different contents are given
these iTool data type names, portions of the standard i Tool functionality may no
longer function correctly.

iTool Data Type Contents

IDLARRAY 2D A two-dimensional array of any IDL datatype.

IDLARRAY 3D A three-dimensional array of any IDL datatype.

IDLCONNECTIVITY A vector containing connectivity list data.

IDLIMAGE A composite data type that includes
IDLIMAGEPIXELS and IDLPALETTE data.

IDLIMAGEPIXELS One or more two-dimensional image planes.

IDLOPACITY_TABLE A 256-element byte array

IDLPALETTE A 3 x 256-element byte array

IDLPOLYVERTEX A composite data type that contains a vector of
vertex data and a vector of connectivity data.

IDLVECTOR A vector of any IDL datatype.

IDLVERTEX A vector containing vertex data.

Table 3-1: iTool data types used by the standard iTools shipped with IDL.

In addition to avoiding use of the standard i Tool data type names for new data types,
you should consider using unique naming schemes for iTool data types you create.
Choosing your own iTool data type naming scheme will help to avoid conflicts with
iTools built by others. Thisis especially important if you intend to share your iTool
code with other IDL users. Choosing a unique prefix or suffix for your iTool data
type names should guard against most namespace collisions.

iTool Developer’s Guide iTool Data Types

52

Chapter 3: Data Management

ITool Data Objects

Each item of dataused by aniTool must be encapsulated in an IDLitData object. Data
objects can be grouped into collections using the IDLitDataContainer class or its
subclass, IDLitParameterSet.

Data Objects

IDLitData objects can hold dataitems of any IDL datatype. The IDLitData class
providesiTool datatyping and data change notification functionality, and when
coupled with the IDLitDataContainer object forms the base element for the
construction of composite data types.

IDLitData objects implement the i Tools notifier interface, which provides a
mechanism by which observers of a data item can be alerted when the state of the
information contained in the data object changes. See “ Data Update Mechanism” on
page 61 for details on the notification system.

Data objects are created using standard IDL object-creation syntax. For example, to
create a data object that contains a vector of data:

; Create a data vector containing 10 random val ues
nmyDat a = RANDOMJ(seed, 10)

; Create a new data object fromthe vector.

oData = OBJ_NEW' | DLi t Dat al DLVector', nyDat a)

The IDLitDatal DLVector classis a subclass of IDLitData designed to hold vector
data. See “IDLitData’ in the IDL Reference Guide manual for a complete description
of the data object, its methods, and its properties.

Data Containers

IDLitDataContainer objects can hold any number of IDLitData or
IDLitDataContainer objects. This ability to organize datainto object hierarchies
allows for the creation of composite data types.

Data container objects are created using standard IDL object-creation syntax, and
individual data objects are included in the data container viaacall to the
IDLitContainer::Add method. For example, the following statements create a new
data container and add the data object created in the previous section:

; Create a data contai ner

oDat aCont ai ner = OBJ_NEW' | DLi t Dat aCont ai ner"')
; Add a data object.

oDat aCont ai ner - >Add, oDat a

iTool Data Objects iTool Developer’s Guide

Chapter 3: Data Management 53

In this example we do not specify an iTool datatype for the data container object

itself.

Tip
Often, you will organize data using a subclass of the IDLitDataContainer class: the
IDLitParameterSet.

See “IDLitDataContainer” in the IDL Reference Guide manual for acomplete
description of the data container object, its methods, and its properties.

Parameter Sets

The IDLitParameterSet class is a specialized subclass of the IDLitDataContainer
class that provides the ability to associate parameters with the contained IDLitData
and IDLitDataContainer objects. This association allows the iTool developer to
package a set of data parameters in a single container, which is then provided to the
iTools system for processing and display. See “IDLitParameterSet” in the IDL
Reference Guide manual for a complete description of the parameter set object, its
methods, and its properties.

Note
Do not confuse parameter sets, which are containers for data objects, with
parameters, which define how datais used by avisualization object. Parameters are
described in “ Parameters’ on page 57.

Using a parameter set object is very similar to using a data container object. The
parameter set itself is created using standard IDL object-creation syntax. The
parameter set object allows for the association of a parameter with each added data
object. For example, the following statements create a new parameter set and add the
data object created in the previous section, assigning a parameter:

; Create a paraneter set object

oPar aneter Set = OBJ_NEW' | DLi t Par anet er Set ')

; Add a data object, assigning a paraneter

oPar anet er Set - >Add, oData, PARAMETER NAME = 'Y data’

iTool Developer’s Guide iTool Data Objects

54 Chapter 3: Data Management

Predefined iTool Data Classes

TheiTool system distributed with IDL includes a number of predefined data classes.
The predefined classes are subclasses of the IDLitData class, each performs
initialization steps that are commonly used when creating data objects that contain
data of specific composite data types. Some of the predefined data classes create data
sub-containers to hold associated data objects, and some register properties
associated with the data.

Note
The predefined i Tool data subclasses are provided as a convenience. You can
always create ageneric IDLitData object rather than using one of the predefined
classes.

You can create objects of these data classesin the same way you create ageneric data
object: by calling the OBJ_NEW function and specifying the appropriate class name.
You can also create new specialized data classes based on one of the predefined
classes. Data classes arelocated inthel i b/ i t ool s/ conponent s subdirectory of
the IDL directory.

IDLitDatalDLArray2D

Creates an IDLitData object of whose TY PE property is set to IDLARRAY 2D. Used
to store atwo-dimensional array of any IDL data type.

Registered Properties
¢ None
Data Sub-containers

* None
IDLitDatalDLArray3D

Creates an IDLitData object of whose TY PE property is set to IDLARRAY 3D. Used
to store athree-dimensional array of any IDL data type.

Registered Properties
¢ None
Data Sub-containers

* None

Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 55

IDLitDatalDLImage

Creates an IDLitData abject of whose TY PE property is set to IDLIMAGE. Used to

store two-dimensional image data. Images can be constructed from multiple image
planes.

Registered Properties
* INTERLEAVE
Data Sub-containers

¢ AnIDLitDatal DL Palette object named “Palette” that contains palette
information provided as an argument to the Init method.

e AnIDLitDatal DLImagePixels object named “Image Planes’ that contains the
image data provided as an argument to the Init method.

IDLitDatalDLImagePixels

Creates an IDLitData object of whose TY PE property is set to IDLIMAGEPIXELS.
Used to store the raw image data (pixels).

Registered Properties
* INTERLEAVE
Data Sub-containers

* None

IDLitDatalDLPalette

Creates an IDLitData object of whose TY PE property isset to IDLPALETTE. Used
to store palette data.

Registered Properties
* None
Data Sub-containers

* None
IDLitDatalDLPolyvertex

Creates an IDLitData object of whose TY PE property is set to IDLPOLY VERTEX.
Used to store vertex and connectivity lists suitable for use with the IDLgrPolygon and
IDLgrPolyline objects.

iTool Developer’s Guide Predefined iTool Data Classes

56 Chapter 3: Data Management

Registered Properties
* None
Data Sub-containers

* AnIDLitDataobject named “Vertices’ (IDLVERTEX) that contains the
vertex list.

¢ AnlIDLitData object named “Connectivity” (IDLCONNECTIVITY) that
contains the connectivity list.

IDLitDatalDLVector

Createsan |IDLitData object of whose TY PE property isset to IDLVECTOR. Used to
store aone-dimensional array of any IDL datatype.

Registered Properties
¢ None
Data Sub-containers

* None

Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 57

Parameters

Parameters represent data items used in awell-defined way by an algorithm that is
computing aresult. In the scheme of the iTools, parameters are the raw material fed
to visualization objects — the IDL routines that create visual displays.

For example, a visualization object that creates a simple line plot might require two
parameters: vectors of dependent and independent data values. These two vectors
would be passed to the routines within the visualization object for processing, and the
result would be displayed in the iTool window.

When avisualization object is created, it registers one or more parameters with the
iTool system. Each parameter has a parameter name and can be of one or more i Tool
data types. Parameter names are used to route the individual data itemsto the correct
routines within the visualization object. See Chapter 6, “ Creating a Visualization” for
more on creating visualization objects.

Note
Do not confuse parameters, which define how datais used by avisualization object,
with parameter sets, which are containers for data objects. Parameter sets are
described in “Parameter Sets’ on page 53.

Parameter Names

Each parameter registered by avisualization is given a parameter name. The
parameter nameis a scalar string, and its scope isthe visualization by which it is
registered. Different visualizations can register parameters that have different
properties using the same parameter name.

Parameter Data Types
Each parameter registered by a visualization is associated with one or more i Tool
data types by setting the TY PES property. The value of the TY PES property can be a
scalar string or astring array; asingle parameter can be associated with multiple data
types. See“iTool Data Types’ on page 50 for more on iTool data types.
Registering Parameters

Parameters are registered when avisualization is created; that is, in the Init method of
an iTool visualization class. To register a parameter, call the RegisterParameter

iTool Developer’s Guide Parameters

58

Parameters

Chapter 3: Data Management

method of the IDLitParameter class (of which iTool visualization classes are a
subclass):

sel f - >Regi st er Par anet er, Parnanet er Nane, $
TYPES = [' DataTypel', ..., 'DataTypeN]

where ParameterName is a string that defines the name of the parameter and the
TYPES keyword is set equal to astring or array of strings specifying theiTool system
data types the parameter can represent. (See “iTool Data Types’ on page 50 for
information on iTools data types.)

A typical parameter registration call looks like the following:
sel f ->Regi sterParaneter, 'Y, /INPUT, TYPES='I|IDLVECTOR , /OPTARCET

Here, the string argument Y is the name of the parameter being registered. The
INPUT keyword specifiesthat Y is an input parameter (specified by the method’s
caler), the TYPES keyword specifiesthat Y is a vector, and the OPTARGET
keyword specifies that operations can be performed on the Y vector.

Additional keywords can be set in the call to RegisterParameter. See the
documentation for “IDLitParameter::RegisterParameter” in the IDL Reference Guide
manual for additional details.

iTool Developer’s Guide

Chapter 3: Data Management 59

Data Type Matching

To understand how the iTool data type matching system works, consider the
following:

« When avisualization is created, it registers one or more parameters, assigning
aparameter name and one or more iTool data types to each.

¢ When adata object isimported or created by aniTool, it is assigned one or
moreiTool datatypes.

« When aparameter set object is created to contain data objects, each data object
can optionally be assigned one or more parameter names.

Now assume that an iTool user requests that a particul ar visualization be created from
aparticular collection of data objects, which are stored in aparameter set object. The
iTool system will do the following:

1. Retrieve the parameter name and i Tool datatypes registered for the
visualization’sfirst parameter.

2. If the parameter set object contains a data object whose Parameter Name
matches the parameter name of the visualization’s first registered parameter,
use that data object as the data for the visualization parameter.

3. If the parameter set object does not contain a data object with a matching
Parameter Name, check the parameter set for data objects for which the
Parameter Name property is not set. If there are no data objects without
Parameter Names, no data is associated with the visualization parameter.

4. Check theiTool datatypes of the data objects without Parameter Names. If a
data object whose iTool data type matches the list of registered data types for
the visualization parameter isfound, use that data object as the data for the
visualization parameter. If no data objects match any data types, no datais
associated with the visualization parameter.

5. Repeat until al registered visualization parameters have been either popul ated
with data, skipped, or there are no more data objects to supply data.

Note
Parameter name matching is done in a case-insensitive fashion. If aparameter is
registered with the parameter name “MyParameter” and a data object hasits
Parameter Name property set to “myParameter”, the two will match.

iTool Developer’s Guide Data Type Matching

60

Chapter 3: Data Management

The Figure 3-1 illustrates this process as a flow diagram.

Retrieve the parameter name
and list of data types from a
registered parameter.

Lai

Is there a
data object with
the same parameter
name?

Get next

parameter
fes

!

Associate data object with
the parameter name.

Are there

Are there
data objects with
no parameter
name?

Yes

Is there a data
object that matches the
parameter data
type?

more parameters?

Mo

Create Visualization

Figure 3-1: Data type matching algorithm used by iTools.

Data Type Matching

iTool Developer’s Guide

Chapter 3: Data Management 61

Data Update Mechanism

When the data contained in a data item changes (usually as the result of the
application of a data-centric operation), all visualizations that depend on that data
item are automatically notified of the change viaacall to the visualization object’s
OnDataChangeUpdate method. (See “ Creating an OnDataChangeUpdate M ethod”
on page 125 for details.)

The data update mechanism is automatic; if you have assigned iTool datatypes (and,
optionally, parameter names) to your data objects, the data matching mechanisms of
the IDLitParameter interface will ensure that updates happen when necessary. Unless
you have modified core iTool functionality, you do no need to handle data change
updates yourself.

iTool Developer’s Guide Data Update Mechanism

62 Chapter 3: Data Management

Data Update Mechanism iTool Developer’s Guide

Chapter 4:

Property Management

This chapter describes the iTool property interface.

About the PropertiesInterface 64
Property DataTypes 67
Registering Properties 70
Property Identifiers 73

iTool Developer’s Guide

Property Attributes 74
Property Aggregation 77
Property Update Mechanism 79
Properties of theiToolsSystem 80

63

64 Chapter 4: Property Management

About the Properties Interface

Object properties are used to store settings and values that relate to visualizations,
data, and other components of aniTool. The iTools system presents a graphical
property sheet interface to tool users; see " Property Sheets’ in Chapter 6 of the iTool
User’'s Guide manual for a description of the property sheet interface. As atool

devel oper, you can manage individual property values, aswell asthe property set that
isvisible to users of your application, programmatically.

Note
In most cases, you do not need to manage updates to visualizations or data that
result from a user’s modifications to values in a property sheet. See “Property
Update Mechanism” on page 79 for details.

What is a Property?

A property isavalue that is associated with an object instance. Examples of property
values commonly associated with iTool objects are Boolean True/False flags, text
strings, color values stored as RGB triplets, and integer and floating point values. For
example, aplot visualization object might have a Color property that definestheline
color as an RGB triplet, aLine thickness property that defines the thickness of the
line drawn as an integer value in pixels, and a Name property that defines how the
plot isreferred to in iTool browser windows.

Properties vs. Preferences

In the case of objects that have a visual representation (plots, annotations, surfaces,
axes, etc.), properties apply to asingle instance of an object. When a new instance of
the same type of object is created, any property changes applied to thefirst object are
not applied to the second. For example, if you change the color of aplot line to red,
subsequent plot lines will still be created with the default line color.

In the case of non-visual objects (operations, file readers and writers, and
manipulators) only one instance of the object is created no matter how many times
the object is requested. As aresult, properties set on these objects will “stick” until
changed again. For example, if you change the value of the Width property of the
Smooth operation, the property will retain the value you set until you changeit again
or close that i Tool.

Finally, properties that apply to al iTools and which are preserved between i Tool
sessions are known as preferences. Preferences include default values for properties

About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management 65

of visual objects (default line style, colors, etc.), and default properties for file
readers, and file writers.

How are Properties Displayed?

Any iTool object can have properties. Properties are aways displayed viathe iTool
property sheet interface, which usesthe IDL WIDGET _PROPERTY SHEET function
to present property names and values in a columnar display. The way the property
sheet interface is displayed to i Tool users depends on the type of object for which
properties are being displayed.

e For visualization objects (any graphical item that appearsin the iTool
window), the property sheet can be displayed by double-clicking on an itemin
the iTool window, by selecting Properties from the window context menu, or
by selecting Visualization Browser from the Window menu.

« For operations, the property sheet can be displayed by selecting Oper ations
Browser from the Oper ations menu.

« For system preferences, the property sheet can be displayed by selecting
Preferences from the File menu.

Setting and Retrieving Property Values

iTool property values are set and retrieved like all object property values, via
SetProperty and GetProperty methods. See “1DLitComponent:: SetProperty” and
“IDLitComponent::GetProperty” in the IDL Reference Guide manual for details, but
remember that your own object classes will be responsible for implementing these
methods and handling the actual property values. See the chaptersin “Using the
iTools Component Framework” for examples of GetProperty and SetProperty
methods.

Property Data Types

While object properties can contain any value that can be stored in IDL, theiTool
property sheet interface (based on the WIDGET_PROPERTY SHEET routine) will
only display properties of nine predefined property data types. (See “ Property Data
Types’ on page 67 for descriptions of the predefined types.) In addition, the property
sheet interface allows devel opers to build and associate a separate widget-based user
interface that allows iTool usersto specify data values of any IDL datatype. User-
defined property values are discussed in “User Defined Property Types’ on page 69.

iTool Developer’s Guide About the Properties Interface

66 Chapter 4: Property Management

Property Registration

In order for an object property to be displayed by the graphical property sheet
interface, it must be registered with the iTool system. Properties are generally
registered when an object is created; see “ Registering Properties’ on page 70 for
additional details.

Property Identifiers

Properties are referenced within the iTools system using property identifiers, which
are simple scalar strings defined when the property is registered. See “Property
Identifiers’ on page 73 for details.

Property Attributes

In addition to the property value, properties have attributes that affect the way the
property is displayed in the property sheet user interface. See “ Property Attributes’
on page 74 for details.

Property Aggregation
Visualization objects can be built from any number of atomic IDL graphic objects
and iTool visualization objects. The property aggregation mechanism allows the

properties of al of the objectsin avisualization to be displayed in a single property
sheet. See “Property Aggregation” on page 77 for details.

About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management

67

Property Data Types

Registered properties must be of one of the datatypeslisted in Table 4-1.

Properties of objects that are not registered (that is, properties that cannot appear in a
property sheet) can be of any IDL datatype.

Type
Code

Type

Description

0

USERDEF

User Defined properties can contain values of any IDL
type, but must also include a string value that will be
displayed in the property sheet. See “User Defined
Property Types’ on page 69 for additional discussion of
User Defined property types.

BOOLEAN

Boolean properties contain either the integer O or the
integer 1.

INTEGER

Integer properties contain an integer value. If aproperty of
integer datatype hasa VALID_RANGE attribute that
includes an increment value, the property isdisplayed in a
property sheet using a dider. If no increment valueis
supplied, the property sheet allows the user to edit values
manually.

FLOAT

Float properties contain a double-precision floating-point
value. If aproperty of float datatype hasa
VALID_RANGE attribute that includes an increment
value, the property is displayed in a property sheet using a
dider. If noincrement valueis supplied, the property sheet
allows the user to edit values manually.

STRING

String properties contain a scalar string value

COLOR

Color properties contain an RGB color triplet

iTool Developer’s Guide

Table 4-1: iTools property data types.

Property Data Types

68 Chapter 4: Property Management
;%ZZ Type Description
6 LINESTYLE | Linestyle properties contain an integer value between 0
and 6, corresponding to the following IDL line styles:
* 0=S0lid
» 1=Dotted
e 2 =Dashed
» 3=Dash Dot
* 4 =Dash Dot Dot
* 5=Long Dashes
* 6=NoLine
See Appendix B, “Property Controls” in theiTool User’s
Guide manual for avisual example of the available line
styles.
7 SYMBOL Symbol properties contain an integer value between 0 and

8, corresponding to the following IDL symbol types:
* 0= No symbol
e 1=Pussign
o 2=Adterisk
e 3= Period (Dot)
* 4 =Diamond
* 5=Triangle
* 6=Square
e 7=X
e 8="Creater-than” Arrow Head (>)
e 9="Lessthan” Arrow Head (<)

See Appendix B, “Property Controls” in the iTool User’s
Guide manual for avisual example of the available
symbols.

Property Data Types

Table 4-1: iTools property data types.

iTool Developer’s Guide

Chapter 4: Property Management 69

Type -

Code Type Description

8 THICKNESS | Thickness properties contain an integer value between 1
and 10, corresponding to the thickness (in points) of the
line.

9 ENUMLIST | Enumerated List properties contain an array of string
val ues defined when the property isregistered. The
GetProperty method returns the zero-based index of the
selected item.

Table 4-1: iTools property data types.
User Defined Property Types

The User Defined property type lets you to create a custom interface that allow users
of your iTool to select data of types other than the predefined i Tool property types.
Creating a user defined property type entails the following:

¢ Creating an EditUserDefProperty method for the iTool component (usually a
visualization or operation) that uses the user defined property. See
“IDLitComponent::EditUserDefProperty” in the IDL Reference Guide manual
for details.

e Creating user interface code to allow usersto select avalue. Intheinitia
release of the iTool system, this means writing an IDL widget interface, but in
future releases other usersinterfaces may be available.

¢ Creating auser interface service to display the interface. See Chapter 13,
“Creating a User Interface Service” for details.

iTool Developer’s Guide Property Data Types

70 Chapter 4: Property Management
Registering Properties

In order for a property associated with an iTool component to be included in the
property sheet for that component, the property must be registered with theiTool. The
property registration mechanism accomplishes several things:

« It alowsyou to expose as many or as few of the properties of an underlying
object as you choose.

e It alowsyou to add user-defined properties to existing objects, and expose
those new properties to users of your application.

Note
You can write code to access and change property values programmatically, even if
the property being changed is not registered.

Registering a Property

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

sel f->Regi sterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. You can specify multiple property attributes in the call to
RegisterProperty; see“Property Attributes’ on page 74 for details.

Note
The property identifier string must obey certain rules; see “Property Identifiers” on
page 73 for details.

You can omit the TypeCode parameter and specify atype keyword; the following two
method calls are identical:

sel f->Regi sterProperty, ' MYPROPERTY', 1
sel f - >Regi ster Property, ' MYPROPERTY', /BOCOLEAN

See “Property Data Types’ on page 67 for alist of property data types, their type
codes, and the associated keywords to the RegisterProperty method.

A typical property registration call looks like the following:

Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 71

sel f->Regi sterProperty, 'FONT_STYLE , $
ENUMLIST = ['Normal', 'Bold'], $
NAME = ' Font style'

Here, the string argument FONT_STYLE isthe property identifier of the property
being registered; this string must be the same as the name of the keyword used with
the GetProperty or SetProperty method when changing the value of the property.

The ENUMLIST keyword specifies that the property datatype is an enumerated list
of strings containing two possible property values (" Normal *, ' Bol d'); thiswill
appear as a pulldown list of values in the property sheet. The NAME keyword
specifiesthe string that will be used asthe [abel for the property in the property sheet;
if NAME is omitted, the property identifier string will be used in the property sheet.

Note
Values set via keywords to the RegisterProperty method are known as property
attributes. Property attributes can be modified after registration using the
SetPropertyAttribute method, described in “Property Attributes’ on page 74.

Additional keywords can be set in the call to RegisterProperty. See the documentation
for “IDLitComponent::RegisterProperty” in the IDL Reference Guide manual for
additional details.

In addition to registering the property using RegisterProperty, you must make sure
that the GetProperty and SetProperty methods of your object handle the value of the
property being registered.

Pre-Registered Properties

Not all properties need to be explicitly registered in your iTool code in order to be
displayed in a property sheet. Most of the IDL graphics objects (IDLgrAxis,
IDLgrPlot, etc.) have a set of propertiesthat are automatically registered if you set the
REGISTER_PROPERTIES property of the object to 1 when it isinstantiated. Seethe
list of object properties contained in the documentation for the IDL graphics objects
in the IDL Reference Guide to determine which properties are registered when the
REGISTER_PROPERTIES property is set.

There may be times when you want some, but not all, of the registrable properties of
agraphics object to appear in the property sheet interface. You have two optionsin
this case:

1. Register the properties of the graphics object individually, with calls to the
RegisterProperty method.

iTool Developer’s Guide Registering Properties

72 Chapter 4: Property Management

2. Usethe REGISTER_PROPERTIES keyword when instantiating the graphics
object, then set the HIDE property attribute on the properties you want to
remove from the property sheet. See“ Property Attributes’ on page 74 for more
on this option.

Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 73

Property ldentifiers

Property identifiers are scalar string values that identify a registered property. The
property identifier string must be accepted as a keyword by the GetProperty and
SetProperty methods for the object. Like all IDL keywords, property identifier strings
must be valid IDL variable names, and cannot contain spaces or non-alphanumeric
characters other than“_”,“! ", and “$". See“IDL_VALIDNAME" inthe IDL
Reference Guide manual for details on valid IDL variable names.

Note
You can specify the property identifier string using any case; IDL will match the
property identifier with the GetProperty or SetProperty keyword in a case-
insensitive manner. As a matter of style, using upper case letters when specifying
property identifiers helps someone reading your code visually match the property
identifier with the keyword values.

The property identifier is not displayed in the property sheet interface; the value of
the NAME property attribute is displayed instead. However, if you do not supply the
NAME attribute, the iTool system will assign it the same value as the property
identifier.

iTool Developer’s Guide Property Identifiers

74

Chapter 4: Property Management

Property Attributes

Property attributes are val ues associated with a property that affect the way the
property is displayed in the iTool property sheet interface. Attributes could be
considered properties-of-properties; as with actual properties, specia methods are
used to get and set attribute val ues.

Note
A property must be registered in order to set or retrieve attribute values.

Property attributes can be set in the call to the IDLitComponent::RegisterProperty
method; simply include the attribute name and its value as a keyword-value pair.

If aproperty has already been registered, you can change the registered attribute
values using the SetPropertyAttribute method of the IDLitComponent class:

sel f->Set PropertyAttribute, Propertyldentifier, ATTRI BUTE = val ue

where Propertyldentifier isastring that uniquely identifies the property, ATTRIBUTE
is one of the property attributes described in “Avail able Property Attributes’ on

page 74, and value is the attribute value. See “ Property Identifiers’ on page 73 for a
discussion of property identifier strings.

A typical property attribute modification call looks like the following:
sel f->Set PropertyAttribute, 'COLOR, NAMVE = 'Surface color'

Here, we change the Name attribute of the COLOR property; when this property is
displayed in a property sheet, the label will be Sur f ace col or.

See “IDLitComponent:: SetPropertyAttribute” in the IDL Reference Guide manual for
additional details.

Available Property Attributes

Every registered iTool property has the following attributes. Property attributes can
be specified as keywords to the RegisterProperty method of the IDLitComponent
class. Attributes whose names are followed by the word “ Get” can be retrieved using
the GetPropertyAttribute method of the IDLitComponent class; attributes whose
names are followed by the word “ Set” can be set using the SetPropertyAttribute
method.

Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 75

DESCRIPTION (Get, Set)

A string value containing a text description of the property. Thisstringisdisplayed in
the property sheet interface.

ENUMLIST (Get, Set)

An array of string values to be displayed in the property sheet interface as an
enumerated list. This property type allows the user to select a string value from a
dropdown list in the user interface, but returns the integer index of the selected item
as the value of the property. This attribute is only used by propertiesof TYPE =9
(enumerated list).

HIDE (Get, Set)

A Boolean flag that specifies whether the property should be displayed in the
property sheet interface.

NAME (Get, Set)

A string value that is displayed as the property name in the property sheet interface. If
the NAME attribute is not specified in the call to the RegisterProperty method, this
attribute will be set to the property identifier string.

PROPERTY_IDENTIFIER (Get)

A string value containing the property identifier. See “ Property Identifiers’ on
page 73 for details.

SENSITIVE (Get, Set)

A Boolean flag that specifies whether the property should be editable by the user
when displayed in the property sheet interface. Properties with the SENSITIVE
attribute set to 0 are displayed, but are dimmed and are not editable.

TYPE (Get)

The property data type code for the property. See “Property Data Types’ on page 67
for details.

UNDEFINED (Get, Set)

A Boolean flag that indicates that the property should appear as a blank cell when
displayed in the property sheet interface. Thisisuseful in situations where properties

iTool Developer’s Guide Property Attributes

76 Chapter 4: Property Management

of multiple objects are displayed in the property sheet (either because multiple
objects are selected, or because the objects have been grouped).

Note
TheiTool developer isresponsible for setting this property attribute back to zero.
Usethe SET_DEFINED field of the WIDGET_PROPERTY SHEET event structure
to determine when to set the UNDEFINED attribute back to zero.

USERDEF (Get, Set)

A string that represents the value of a user-defined property. See “User Defined
Property Types’ on page 69 for details.

VALID_RANGE (Get, Set)

For integer or float types (TYPE = 2 or TY PE = 3), set this keyword to atwo- or
three-element vector specifying the [minimum, maximum] or [minimum, maximum,
increment] for valid values of the property.

What is displayed for the property sheet number cell depends upon the following:

e If thisattribute is not specified — the property sheet displays an editable text
field where masked editing is enforced, and the range is that of the data type.
The only accepted keystrokes are the ten digits, and the plus and minus signs.
If the float type is specified, the decimal, and “d” and “€” (scientific exponent
notation tokens) are also allowed.

« If arangeis specified without an increment — the property sheet displays a
spinner control that allows the user to click, or click and hold the up or down
buttons to change the value. For an integer type, the increment is one. For a
float type, the increment equals approximately 1/100 of the range. For
example, arange of 100 resultsin anincrement of 1. A valueis snapped to the
nearest allowable value when a value outside the range, or not equal to an
incremental value, isentered. The editable text field (featuring masked editing)
also allows the user to enter anumerical value.

e |If arange and increment are specified — the property sheet displays a slider
with amarker that can be repositioned to change the value. A valueis snapped
to the nearest allowable value when a value outside the range, or not equal to
an incremental value, is entered. The increment value must be positive.
Specifying an increment of 0 (zero) is the same as specifying a range without
anincrement. The editable text field (featuring masked editing) also allowsthe
user to enter anumerical value.

Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 77
Property Aggregation

TheiTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

sel f - >Aggregate, Obj ect_Reference

where Object_Reference is areference to the object whose properties you want
aggregated into the visualization object. A typical property aggregation call lookslike
the following:

sel f._oSymbol = OBJ_NEW' I DLitSynmbol ', PARENT = self)

sel f->Aggregate, self._oSynbol
Here, thefirst line creates an IDLitSymbol object and storesitinthe _oSynbol field
of the visualization object’s class structure. The second line calls the Aggregate
method with the object reference to the IDLitSymbol object as the argument. After
the call to the Aggregate method, all registered properties of the IDLitSymbol object
will be exposed in the property sheet for the visualization itself.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is ssmply a shorthand method of aggregating the properties of an object
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

sel f->Add, Object Reference, / AGGREGATE
isthe same as the following two calls:

sel f->Add, Obj ect Reference
sel f->Aggregate, Object_ Reference

Working with Aggregated Properties
When the properties of multiple objects are aggregated in avisualization object, there

are two possible ways to display the combined property set: aunion or an
intersection. The way aggregated properties are displayed by agiven visualization

iTool Developer’s Guide Property Aggregation

78 Chapter 4: Property Management

depends on the value of the visualization’s PROPERTY _INTERSECTION property:
by default, this property is not set (it contains avalue of 0), and the union of the
aggregated propertiesis displayed. If PROPERTY _INTERSECTION isset to 1 when
the visualization object is created, the intersection of the aggregated propertiesis
displayed. The following sections explain the behavior of the property sheet interface
in both situations.

Union

By default, a visualization object displays the union of the properties of any
aggregated objects. Properties are displayed in the property sheet interface asfollows:

« All of the unique properties of al of the aggregated objects are displayed.

* Only oneinstance of agiven property is displayed. This meansthat if multiple
objects have the same property, this property will be displayed only once, and
all objects will have the same property value.

e Thevisuaization will appear in iTool browsers as a single object — the
aggregated objects will not be visible in the browser hierarchy.

Intersection

If the PROPERTY _INTERSECTION property is set when the visuaization is
created, the visualization object displays the intersection of any aggregated objects.
Properties are displayed in the property sheet interface as follows:

¢ Only propertiesthat are common to al of the aggregated objects are displayed
as properties of the visualization object. Changing the value of a common
property in the visualization's property sheet changes the value for all
aggregated objects.

e Thevisualization will appear iniTool browsers as a container object — the
aggregated objects will be visible beneath the visualization object in the
browser hierarchy (unless the property’s HIDE attribute is set, in which case
the property will not be displayed). Selecting an individual aggregated object
in the browser hierarchy will display that object’s own properties.

« If thevalue of aproperty that is common to all of the aggregated objectsis
different for different objects, the value will show in the parent container’s
property sheet as undefined.

Property Aggregation iTool Developer’s Guide

Chapter 4: Property Management 79

Property Update Mechanism

When a user changes the value of a property viathe property sheet interface, the
object that implements the property is automatically updated. If the object has a
visual representation, the display of the iTool window is also updated automatically.

The update mechanism is handled by the SetProperty method; as long as any
SetProperty methods you create call the SetProperty methods of their superclasses,
there is nothing more you need to do.

Property changes are automatically recorded by the i Tool undo/redo system. You do
not need to supply any extra code to support undo/redo.

iTool Developer’s Guide Property Update Mechanism

80 Chapter 4: Property Management

Properties of the iTools System

iTools system preferences are default settings for the values of properties of file
readers, file writers, and the iTool system itself. System preferences are revealed to
the user viathe system preferences browser, which is displayed when a user selects
File —» Preferencesin aniTool

Properties of the iTools System iTool Developer’s Guide

Part II: Using the
ITools Component
Framework

Chapter 5:
Creating an iTool

This chapter describes the process of creating an new iTool definition and command-line launch
routine.

OVEIVIEW ...t 84 Creating aniTool Launch Routine 97
CreatingaNew iToolClass 85 Example: SmpleiTool 102
RegisteringaNew Tool Class 95

iTool Developer’s Guide 83

84

Chapter 5: Creating an iTool

Overview

Creating anew iTool using the iTools component framework is vastly simpler than
creating asimilar tool from scratch in IDL. The standard i Tool user interface and
functionality can be included in any new i Tool with afew simple lines of code. Using
the iTools framework leaves you free to concentrate on devel oping functionality
unigue to your application.

That said, creating even the simplest iTool does require that you have abasic
familiarity with the concepts of object-oriented programming in general, and with the
process of creating object-oriented programsin IDL in particular. If you have written
even very simple object-oriented applicationsin IDL, or in another language such as
Java or C++, you probably already have the necessary skills. For background
information on writing object-oriented applicationsin IDL, see Chapter 23, “ Object
Basics’ in the Building IDL Applications manual.

The iTool Creation Process

Overview

To create anew iTool, you will do the following:

e Choose aniTool object class on which your new tool will be based. In almost
all cases, you will base new iTools either on the IDLitToolbase class or on an
iTool classthat isitself based on IDLitToolbase. The IDLitToolbase class
defines all of the standard i Tool functionality exposed by the individual i Tools
included with IDL.

* Define the visualization types, data operations, user interface tools
(manipulators), and data import/export features that will be availablein your
iTool. You can choose from a variety of predefined features included with the
iTool system asincluded with IDL, or you can create your own. The process of
defining the features available in your new iTool is discussed in “ Creating a
New iTool Class’ on page 85.

* Register your new iTool class with the system as described in “Registering a
New Tool Class’ on page 95.

e Providean IDL procedure that creates an instance of your new iTool class, as
described in “Creating an iTool Launch Routing” on page 97.

This chapter describes the process of creating anew iTool from existing visualization
types, operations, manipulators, and file readers and writers. The chaptersthat follow
describe how to create your own visualization types, operations, manipulators, and
file readers and writers to be incorporated into new iTools.

iTool Developer’s Guide

Chapter 5: Creating an iTool 85

Creating a New iTool Class

AniTool object class definition file must contain, at the least, the class Init method
and the class structure definition routine. The Init method contains the statements that
register any operations, visualizations, manipulators, and file readers or writers
available in theiTool. The class structure definition routine defines an IDL structure
that will be used when creating new instances of theiTool object.

The process of creating aniTool definition is outlined in the following sections:
e “Creating an Init Method” on page 85
e “Creating the Class Structure Definition” on page 92

Creating an Init Method

TheiTool class Init method handles any initialization required by the iTool object,
and should do the following:

e define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

e cal the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

e register visualizations, operations, manipulators, and file readers/writers
available in the new iTool but not registered by any superclasses

e perform other initialization steps as necessary

e returnthevalue 1if the initialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies that
keywords not explicitly handled by your method will be passed through to other
routines called by your method via IDL’s keyword inheritance mechanism. The Init
method for atool generally looks something like this:

FUNCTI ON MyTool ::Init, MYKEYWORDL = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF EXTRA = _extra

where MyTool is the name of your tool class and the MYKEYWORD parameters are
keywords handled explicitly by your Init function.

iTool Developer’s Guide Creating a New iTool Class

86 Chapter 5: Creating an iTool

Note
Always use keyword inheritance (the REF_EXTRA keyword) to pass keyword
parameters through to any called routines. See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Superclass Initialization

TheiTool class Init method should call the Init method of any required superclasses.
For example, if your iTool isbased on an existing i Tool, you would call that tool’s Init
method:

success = sel f->SonmeTool C ass::Init(_EXTRA = _extra)

where SomeTool Class is the class definition file for the iTool on which your new
iTool isbased. The variable success containsa 1l if the initialization was successful.

Note
Your iTool class may have multiple superclasses. In general, each superclass’ Init
method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is agood ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
0:

I F (sel f->SomeTool d ass::Init(_EXTRA = _extra) EQ 0) THEN RETURN, O

This conventionisused in al iTool classesincluded with IDL. RSI strongly suggests
that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of theiTool class can be set in the Init method by specifying the property
names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitTool class are available to any iTool class. See
“IDLitTool Properties’ in the IDL Reference Guide manual.

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. See “ Keyword Inheritance” in Chapter 4 of

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 87

the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.

Standard Base Class

While you can create your new iTool from any existing iTool class, in many cases,
iTool classes you create will be subclassed directly from the base class

IDLitToolbase:
I F (sel f->IDLitTool base::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, O

The IDLitToolbase class provides the base iTool functionality used in the tools
created by RSI. See “ Subclassing from the IDLitToolbase Class’ on page 92 for
details.

Note
To create an iTool that does not include the standard i Tool functionality, subclass
from the IDLitTool class.

Return Value

If al of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other iTools that
subclass from your iTool class may check this return value, as your routine should
check the value returned by any superclass Init methods called.

Registering Visualizations

Registering a visualization type with an iTool class allows instances of the iTool to
create and display visualizations of that type. Any number of visualization types can
be registered for use by agiveniTool.

Note
You must register at least one visualization type with your iTool class. Unlike
operations, manipulators, and file readers and writers, no visualization types are
registered by the IDLitToolbase class.

Visualization types are registered by calling the IDLitTool::RegisterVisualization
method:

sel f->Regi sterVisualization, Visualization_Type, $
Vi sType_d ass_Nanme

iTool Developer’s Guide Creating a New iTool Class

88

Chapter 5: Creating an iTool

where Visualization_Typeisthe string you will use when referring to the visualization
type, and VisType Class Nameisastring that specifies the name of the classfile that
contains the visualization type's definition.

Note
ThefileVi sType_Cl ass_Nanme__def i ne. pr o must exist somewherein IDL’s
path for the visualization type to be successfully registered.

For example, the following method call registers avisualization type named ny Vi s
for which the class definition is stored in the file
myVi sual i zati on__define. pro:

sel f->Regi sterVisualization, 'nyVis', 'nyVisualization'

See “Registering a Visualization Type” on page 130 for additional details. See
“Predefined iTool Visualization Classes’ on page 109 for alist of visualization types
included inthe iTool system asinstalled with IDL.

Registering Operations

Registering an operation with aniTool class allows instances of theiTool to apply the
registered operation to data selected in the iTool. Any number of operations can be
registered with agiven iTool.

Operations are registered by calling the IDLitTool::RegisterOperation method:

sel f - >Regi st er Operation, QOperation_Type, OpType_C ass_Nane, $
| DENTI FI ER = identifier

where Operation_Type is the string you will use when referring to the operation,
OpType_Class Name is astring that specifies the name of the classfile that contains
the operation’s definition, and identifier is a string containing the operation’s i Tool
identifier. (The identifier is used to specify where on the iTool’s menu bar the
operation will appear. See “iTool Object Identifiers’ on page 27 for a discussion of
iTool system identifiers.)

Note
Thefile OpType_C ass_Nanme__defi ne. pr o must exist somewherein IDL’s
path for the visualization type to be successfully registered.

For example, the following method call registers an operation named my Qp for which
the class definitionis stored inthe filemyOper at i on__def i ne. pr o, and placesthe
menu selection Change My Dat aintheFi | t er s folder of theiTool Oper ati ons
menul.

sel f->Regi sterVisualization, 'myQp', 'nyQperation', $

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 89

| DENTI FI ER = ' Operations/Filters/Change My Data'

See “Registering an Operation” on page 174 for additional details. See “ Predefined
iTool Operations’ on page 142 for alist of operationsincluded in the iTool system as
installed with IDL.

Registering Manipulators

Registering a manipulator with an iTool class alows instances of the iTool to enable
the registered manipulator for usein the iTool. Any number of manipulators can be
registered with agiven iTool.

Manipulators are registered by calling the IDLitTool::RegisterMani pulator method:

sel f -> Regi st erMani pul ator, Mani pul at or Nane, $
Mani pul at or _Cl ass_Nare, | CON = icon

where ManipulatorName is the string you will use when referring to the manipulator,
Manipulator_Class Name is a string that specifies the name of the classfile that
contains the manipulator’s definition, and icon is a string containing the name of a
bitmap file to be used in the toolbar button. (See “Icon Bitmaps’ on page 43 for
details on where bitmap icon files are located.).

Note
Thefile Mani pul at or _C ass_Nane__defi ne. pr o must exist somewherein
IDL’s path for the visualization type to be successfully registered.

For example, the following method call registers a manipulator named ny Mani p for
which the class definition is stored in the file my Mani pul at or __def i ne. pro, and
specifiesthefilear r ow. bnp located in the bi t maps subdirectory of ther esour ce
subdirectory of the IDL distribution as the icon to use on the toolbar.

sel f -> RegisterManipulator, 'nyManip', 'nmyManipulator', $
| CON = "arrow

See “Registering a Manipulator” on page 214 for additional details. See “ Predefined
iTool Manipulators’ on page 190 for alist of manipulatorsincluded in the iTool
system asinstalled with IDL.

Registering File Readers and Writers

Registering afile reader or filewriter with aniTool class allows instances of the i Tool
to read or write files of the type handled by the reader or writer. Any number of file
readers and writers can be registered with agiven iTool.

File readers are registered by calling the IDLitTool::RegisterFileReader method:
sel f->Regi ster Fi | eReader, Reader_Type, Reader Type_d ass_Nane, $

iTool Developer’s Guide Creating a New iTool Class

90

Chapter 5: Creating an iTool

| CON = icon

where Reader_Type isthe string you will use when referring to the file reader,
ReaderType Class Nameis astring that specifies the name of the classfile that
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file used to represent the file reader.

Similarly, file writers are registered by calling the IDLitTool::RegisterFileWriter
method:

self->RegisterFileWiter, Witer_Type, WiterType_d ass_Nane, $

I CON = icon

where Reader_Type is the string you will use when referring to the file reader,
Reader Type Class Nameis astring that specifies the name of the classfile that
contains the file writer's definition, and icon is a string containing the name of a
bitmap file used to represent the file writer. See“lcon Bitmaps’ on page 43 for details
on where bitmap icon files are located.

Note
The class definition filesReader Type_Cl ass_Nanme__defi ne. pro or
WiterType_O ass_Nane__define. pro must exist somewherein IDL’s path
for the file reader or writer to be successfully registered.

For example, the following method call registers afile reader named nmyReader for
which the class definition is stored in the file nyFi | eReader __def i ne. pr o, and
specifiesthefiler eader . bnp located in the hone/ mydi r directory astheicon to
use on the toolbar.

sel f - >Regi ster Fi | eReader, 'nyReader', 'nyFileReader', $
| CON = '/ hone/ nydi r/ reader. bnp’

See “Registering a File Reader” on page 245 for additional details. See “ Predefined
iTool File Readers’ on page 231 for alist of file readersincluded in the iTool system
asinstaled with IDL.

Similarly, the following method call registers afile writer named nyW i t er for
which the class definition is stored in thefilenyFi | ewi ter __defi ne. pro, and
specifiesthefilewr i t er. bnp located in the hone/ mydi r directory astheicon to
use on the toolbar.

sel f->Regi sterFi | eReader, 'nyWiter', "nyFileWiter', $
ICON = '/ hone/nydir/witer. bnp'
See “Registering a File Writer” on page 269 for additional details. See “ Predefined
iTool File Writers” on page 255 for alist of file writersincluded in the iTool system
asinstalled with IDL.

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 91

Example Init Method

The following example code shows a very simple Init method for an i Tool hamed
Exanpl eTool . Thisfunction should be included in afile named
Exanpl eTool __defi ne. pro.

FUNCTI ON Exanpl eTool ::Init, _REF_EXTRA = _extra
Call the Init nethod of the super class.

I F (sel f->IDLitTool base: : | ni t (NAVE=' Exanpl eTool ', $
DESCRI PTI ON = ' Exanpl e Tool dass', _EXTRA = _extra) EQO) THEN $

RETURN, O
Regi ster a visualization
sel f->Regi sterVisualization, 'Image', '"IDLitVislnage', $
| CON = 'image'

Regi ster an operation
sel f ->Regi sterOperation, 'Byte Scale', 'IDLitOpBytScl', $
| DENTI FI ER = ' Operations/Byte Scal e'

RETURN, 1

END
Discussion

The Exanpl eTool isbased on the IDLitToolbase class (discussed in “ Subclassing
from the IDLitToolbase Class’ on page 92). As aresult, al of the standard i Tool
operations, manipulators, file readers and writers are already present. The

Exanpl eTool Init method needs to do only three things:

1. Cadl theInit method of the superclass, IDLitToolbase, using the EXTRA
keyword inheritance mechanism to pass through any keywords provided when
the Exanpl eTool Init method is called.

2. Register avisualization type for the tool. We choose the standard image
visualization defined by thei dl i t vi si mage__def i ne. pr o class definition
file,

3. Register an operation. We choose an operation that implementsthe IDL
BYTSCL function, defined by thei dl i t opbyt scl __defi ne. pro class
definition file and place a menu item in the iTool Operations menu.

iTool Developer’s Guide Creating a New iTool Class

92 Chapter 5: Creating an iTool

Note
This example is intended to demonstrate how simple it can be to create anew iTool
class definition. While the class definition for an i Tool with significant extra
functionality will register more features, the processis the same.

Unregistering Components

In some cases, you may want to subclass from an iTool class that contains features
you do not want to include in your class. Rather than building a class that duplicates
most, but not all, of the functionality of the existing class, you can create a subclass
that explicitly unregisters the components that you don’t want included.

For each Register method of the IDLitTool classthereis acorresponding UnRegister
method. Call the UnRegister method with the Name you used when registering the
component. For example, if your superclass registers an operation with the identifier
"Ml tiplyBy100' andyou do not want this operation included in your class, you
would include the following method call in your iTool class Init method:

sel f ->UnRegi st er Operation, 'MiltiplyByl00'
Creating the Class Structure Definition

When any IDL object is created, IDL looksfor an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 23 of the Building IDL Applications manual.

Subclassing from the IDLitToolbase Class

The IDLitToolbase class defines the base operations and user interface functionality
used iniTools created by RSI. If your aimisto create an iTool that has base
functionality similar to that included in the standard i Tools, you will want to subclass
from the IDLitToolbase class, or from another tool that subclasses from the
IDLitToolbase class.

The IDLitToolbase class registers alarge number of operations, manipulators, file
readers, and file writers. This base feature set may change from release to release;

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 93

inspect thefilei dl i tt ool base__define. prointhelib/it ool s subdirectory
of your IDL distribution for the exact set of features included in your distribution.

Note
To create an iTool that does not include the standard i Tool functionality, subclass
from the IDLitTool class.

In general, the IDLitTool base class registers the following types of features:

Standard menu items — Operations that appear in the File, Edit, Insert, Window,
and Help menus are defined in the IDLitToolbase class. If you are building a subclass
of the IDLitToolbase class, you have the option of adding items to or removing items
from these menus in your own class definition file.

Operations menu items — Standard data-centric operations provided as part of the
iTools distribution and which appear in all of the standard i Tools are placed on the
Operations menu by the IDLitToolbase class.

Context menu items — Standard operations such as Cut, Copy, Paste, Group,
Ungroup, etc. are included on the context menu by the IDLitToolbase class.

Toolbar items — Operations that enable standard File and Edit menu functionality
are placed on the toolbar by the IDLitToolbase class. In addition, standard

mani pulators (zoom, arrow, and rotate), and annotations (text, line, rectangle, oval,
polygon, and freeform) are placed on the toolbar.

File readers — All file readersincluded in the iTools distribution are registered by
the IDLitToolbase class. File readers do not appear in theiTool interface, but are used
automatically when importing a datafile.

File writers — All filewritersincluded in the iTools distribution are registered by the
IDLitToolbase class. File writers do not appear in the iTool interface, but are used
automatically when exporting datato afile.

Example Class Structure Definition

Thefollowing isavery simple iTool class structure definition for an iTool named
Exanpl eTool . This procedure should be the last procedure in afile named
exanpl et ool __defi ne. pro.

PRO Exanpl eTool __Defi ne
struct = { Exanpl eTool, $
| NHERI TS | DLi t Tool base $; Provides i Tool interface

}
END

iTool Developer’s Guide Creating a New iTool Class

94

Chapter 5: Creating an iTool

Discussion

The purpose of the structure definition routine is to define anamed IDL structure
with structure fields that will contain the iTool object instance data. The structure
name should be the same as the iTool’s class name — in this case, Exanpl eTool .

Like many iTools, Exanpl eTool iscreated as asubclass of the IDLitToolbase class.
iToolsthat subclassfrom IDLitToolbase inherit all of the standard i Tool functionality,
as described in “ Subclassing from the IDLitToolbase Class’ on page 92.

Note
This example isintended to demonstrate how simple it can be to create a new i Tool
class definition. While the class definition for an i Tool with significant extra
functionality will likely define additional structure fields, and may inherit from
other iTool classes, the basic principles are the same.

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 95

Registering a New Tool Class

Before an instance of anew iTool can be created, the tool’s class definition must be
registered with the iTool system. Registering an iTool class with the system links the
class definition file containing the actual IDL code that initializes an iTool object
with asimple string that names the iTool. Since you use the name string in code that
creates instances of individual tools, a change to the name of the class definition file
requires only a change to the code that registers the iTool class.

iTool classes areregistered using the ITREGISTER procedure. In most cases, the call
to the ITREGISTER procedure will be included in an iTool’s launch routine, but the
call can take placein any code at any time. If multiple iTool launch routines create
instances of the same iTool class, however, you may find it more convenient to
register theiTool in asingle routine, called only once. This removes the need to call
the registration routine in each launch routine individually.

Note
If only asmall number of routines will create instances of a given iTool, you may
find it more convenient to register the iTool class within the tool launch routine.

Using ITREGISTER

Use the ITREGISTER routine to register the class definition:
| TREG STER, ' Tool Name', 'Tool _Cl ass_Naneg'

where Tool Name is a string you will use to create instances of the tool, and
Tool_Class Nameis astring that specifies the name of the classfile that contains the
tool’s definition.

Note
Thefile Tool _Cl ass_Nanme__defi ne. pr o must exist somewherein IDL’s path
for the tool definition to be successfully registered.

If agiveniTool class has aready been registered when the ITREGISTER routineis
called, the class will not be registered a second time. The registration can be
performed at any timein an IDL session before you attempt to create an instance of
theiTool.

See“ITREGISTER” in the IDL Reference Guide manual for details.

iTool Developer’s Guide Registering a New Tool Class

96 Chapter 5: Creating an iTool

Example

Suppose you have aniTool class definition file named ny Tool __def i ne. pro,
located in adirectory included in IDL's 'PATH system variable. Register this class
with the iTool system with the following command:

| TREG STER, 'MWy First Tool', 'mnyTool'

Tools defined by the myTool class definition file can now be created by the iTool
system by specifying thetool name My First Tool . In most cases, this command
would be included in the launch routine for the my Tool iTool, but the call can be
placed in any code that is executed before the first instance of theiTool is created.

Registering a New Tool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 97

Creating an iTool Launch Routine

AniTool launch routineisan IDL procedure that creates an instance of an iTool by
calling the IDLITSYS CREATETOOL function. The launch routine may do other
things as well, including creating data objects to pass to the create function from
command-line arguments.

The process of creating aniTool launch routine is outlined in the following sections:
e “Specifying Command-Line Arguments and Keywords’ on page 97
e “Creating Data Objects’ on page 98
e “Handling Errors’ on page 99
e “Creating aniTool Instance” on page 100

Specifying Command-Line Arguments and Keywords

If you want to be able to specify datato be loaded into your iTool when launching the
tool from the IDL command line, you must specify positional arguments or keywords
in the procedure definition. The procedure definition for an iTool launch routine may
look something like the following:

PRO nyTool , Al, A2, MYKEYWORD = nyKeys, IDENTIFIER = id, $

_EXTRA = _extra

Here, there are two positional parameters (or arguments) and three keyword
parameters are specified.

Arguments

Data arguments are specified in an iTool launch routine as with any IDL procedure.
See“Parameters’ in Chapter 4 of the Building IDL Applications manual for detailson
arguments.

Keywords

Keyword arguments to an iTool launch routine are handled as with any IDL
procedure. See “Parameters’ in Chapter 4 of the Building IDL Applications manual
for details on keyword arguments. In addition, you may want to include the following
keyword arguments in the definition of the launch routine:

The IDENTIFIER Keyword

The IDENTIFIER keyword is used to return the iTool system identifier string for the
newly created tool. You must set the variable specified by the IDENTIFIER keyword

iTool Developer’s Guide Creating an iTool Launch Routine

98

Chapter 5: Creating an iTool

equal to thereturn value of the IDLITSYS CREATETOOL function. This allowsthe
user to retrieve the newly-created i Tool’s identifier in an IDL variable by including
the IDENTIFIER keyword in the call to the launch routine. The iTool identifier can
then be used to specify the iTool as the target for another operation, such as
overplotting.

The EXTRA Keyword

Optionally, you can use IDL’s keyword inheritance mechanism to pass keyword
parameters that are not explicitly handled by your routine through to other routines.
See“Keyword Inheritance” in Chapter 4 of the Building IDL Applications manual for
details on IDL’s keyword inheritance mechanism.

Creating Data Objects

If your iTool launch routine allows users to specify data arguments (as opposed to
keywords that are passed through to the iTool component objects), you must process
those arguments and create an IDLitParameterSet object to be passed to the
IDLITSYS CREATETOOL function. Parameter sets, data types, and general iTool
system data handling concepts are discussed in detail in Chapter 3, “Data
Management”.

Parameter Sets

Datais passed to a newly-created i Tool instance by supplying an IDLitParameterSet
object asthe value of the INITIAL_DATA keyword tothe IDLITSYS CREATETOOL
function. To create a parameter set object, use the OBJ NEW function:

oParaneterSet = OBJ_NEW' | DLitParaneterSet', NAME = parantSet Nane)

where oParameter Set is a named variable that will hold the object reference to the
parameter set object and paramSetName is a string that will be used by the iTool user
interface to refer to the parameter set.

For example, if you are creating a data container to hold X and Y vectorsto be plotted
in two-dimensions, you might use the following code:

oPlotData = OBJ_NEW' I DLitParanmeterSet', NAVE = 'Plot data')

See Chapter 3, “Data Management”, and “|DLitParameterSet” in the IDL Reference
Guide manual for details.

Data Iltems

The parameter set object holds objects of type IDLitData, or objects of types derived
from IDLitData, such as IDLitDatalmage or IDLitDataVector. These data objects, in

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 99

turn, hold the actual data used by theiTool. To create a data object, use the
OBJ _NEW function:

oData = OBJ_NEW' IDLitData', vData, TYPE = dataType, $
NAME = dat aNane)

where oData is anamed variable that will hold the object reference to the data object,
vData isan IDL variable containing the actual data, dataType is a string specifying
theiTool datatype of the data held by the object, and dataNameis a string that will be
used by the iTool user interface to refer to the data object. See “iTool Data Types’ on
page 50 for additional information on iTool data types.

For example, if you are creating a data object to hold the Y vector of a two-
dimensional plot, you might use the following code:

oPlotY = OBJ_NEW'IDLitData', yData, TYPE = 'IDLVECTOR , $
NAME = 'Y data')

Here, the data that make up the Y vector are contained in the variable yDat a. After a
data item has been created, it must be added to the parameter set object. Continuing
our example, the following code adds the oPlotY data object to the oPlotData
parameter set object, assigning the parameter name' Y dat a' :

oPl ot Dat a- >Add, oPl otY, PARAMETER NAME='Y dat a'

See Chapter 3, “Data Management”, and “IDLitData’ in the IDL Reference Guide
manual for details.

Example

For an example i Tool launch routine that creates and popul ates a parameter set object,
see “Example: SimpleiTool” on page 102.

Handling Errors

The error-handling requirements of your iTool launch routine will depend largely on
the type of data processing you perform. In general, your goal should be to clean up
any objects or pointers your routine creates, display an error message to the user, and
return to the calling routine. It is beyond the scope of this chapter to discuss IDL’s
error handling mechanisms in detail; for more information see Chapter 19,
“Controlling Errors’ in the Building IDL Applications manual.

iTool launch routines included in the IDL distribution handle errors by placing a
block of IDL code that looks like the following at the beginning of the routine:

ON_ERROR, 2
CATCH, iErr
IF (iErr NE 0) THEN BEG N

iTool Developer’s Guide Creating an iTool Launch Routine

100

Chapter 5: Creating an iTool

CATCH, / CANCEL
| F OBJ_VALI D(oDat aCbj ect) THEN OBJ_DESTROY, oDat aObj ect
MESSAGE, [/ RElI SSUE_LAST
RETURN
ENDI F

This block of error-handling code does the following:

1. Usesthe ON_ERROR procedure to instruct IDL to return to the caler of the
program that establishes an error condition.

2. Usesthe CATCH procedure to establish an error-handler for theiTool launch
routine, returning the error code in the variablei Err.

3. Ifthevalueofi Err isnot O (that is, if an error is detected), do the following:
¢ Usethe CATCH procedure again to cancel the error handler.

« Destroy any data objects created by the launch routine. In most cases,
destroying the data container object (represented here by oDataObject)
will be sufficient to destroy all objects added to the data container.

e Usethe MESSAGE routine to display the error messagein the IDL output
log.

Once these tasks have been accomplished, use the RETURN procedure to
return to the routine that called the iTool launch routine, or to the IDL Main
level, if the launch routine was invoked at the IDL command prompt.

Depending on the complexity of your iTool launch routine, additional cleanup may be
required. For example, you may need to free IDL pointers created by the launch
routine. In many cases, however, error-handling code similar to that used in the
standard iTool launch routines will be sufficiently robust.

Creating an iTool Instance

Create an instance of your iTool class by caling the IDLITSYS CREATETOOL
function:

id = I DLI TSYS_CREATETOOL(' Tool Nane', NAME = 'Tool Label', $
VI SUALI ZATI ON_TYPE = 'VisType', $
I NI TI AL_DATA = 'oDataContainer', _EXTRA = _extra)

where Tool Name is the name of a previously-registered iTool class, Tool Label isa
text label that will be used in the iTool user interface to identify this instance of the
iTool, VisTypeisthe name of apreviously-registered i Tool visualization type (or array
of visualization types), and oDataContainer is an IDLitDataContainer object created
from the values specified as arguments or keywords.

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 101

We aso use I DL's keyword inheritance mechanism (the EXTRA keyword) to pass
any additional keyword parameters specified when the launch routineis called
through to the lower-level iTool routines.

See“IDLITSYS CREATETOOL” inthe IDL Reference Guide manual for details.
iTool Class Registration

Before an instance of an iTool can be created, the iTool class must be registered with
theiTool system. AniTool class can be registered with the system within the launch
routine by calling the ITREGISTER routine, but you may benefit from registering
iTool classes separately. See “ Registering a New Tool Class’” on page 95 for details.

iTool Visualization Type Registration

Similarly, the visualization type or types specified by the VISUALIZATION_TYPE
keyword must have been registered with the system. In most cases, visualizationswill
either be predefined i Tool visualizations (see “Predefined i Tool Visualization
Classes’ on page 109) or will be registered in the iTool class' Init method, as
described in “Creating a New iTool Class’ on page 85. All iTools must have at |east
one visualization type. Multiple visualization types are specified by supplying a
string array as the value of the VISUALIZATION_TY PE property.

Note
Once avisualization type has been registered with theiTool system, it isavailableto
all iTools launched during an IDL session. This meansthat the list of visualization
types available to agiven iTool can change if other iTools are launched.

iTool Developer’s Guide Creating an iTool Launch Routine

102 Chapter 5: Creating an iTool

Example: Simple iTool

This example creates avery simple iTool named exanpl elt ool that incorporates
standard functionality from the i Tools distribution, along with other example i Tool
features created in other chapters of this manual.

Note
The class definition code for this exampleiTool isincluded in thefile
exanpl elt ool __defi ne. prointheexanpl es/ doc/i t ool s subdirectory of
the IDL distribution. Enter

exanpl elt ool
at the IDL prompt to create an instance of theiTool, or
.conpi |l e exanpl elt ool __define

to open the. pr o filein the IDL editor.

Class Definition File

The class definition for the exanpl elt ool consists of an Init method and a class
structure definition routine. Aswith all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pr o appended).

Init Method
FUNCTI ON exanpl eltool ::Init, _REF_EXTRA = _extra
Call our super class
IF (self->IDLitTool base::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, O
;*** Visualizations
Here we register a customvisualization type described in

the "Creating Visualizations" chapter of this nanual.

sel f->Regi sterVisualization, 'lmage-Contour', $
" exanpl el_vi sl mageContour', I CON = 'inmage', /DEFAULT

; *** Qperations nmenu
Here we register a customoperation described in the "Creating

Example: Simple iTool iTool Developer’s Guide

Chapter 5: Creating an iTool 103

; Operations" chapter of this manual.

sel f->Regi ster Qperation, 'Exanple Resanple', $
' exanpl el_opResanple', $
| DENTI FI ER = ' Oper ati ons/ Exanpl es/ Resanpl e'

;*** File Readers
Here we register a customfile reader described in the $
"Creating File Readers" chapter of this manual .

sel f->Regi sterFi | eReader, 'Exanple Tl FF Reader', $
"exanpl el_readTl FF', | CON=' demp', /DEFAULT

*** File Witers

Here we unregi ster one of the standard file witers used

; by the i Tools, replacing it with a customfile witer $

; described in the "Creating File Witers" chapter of this $
; manual .

sel f->UnRegi sterFileWiter, 'Tag Inage File Format'

sel f->RegisterFileWiter, 'Exanple TIFF Witer', $
"exanmplel_witetiff', | CON='denmo', /DEFAULT

RETURN, 1

END
Discussion

Thefirst item in our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class hame exampleltool. Note the use of the
_REF_EXTRA keyword inheritance mechanism; this allows any keywords specified
in acall to the Init method to be passed through to routines that are called within the
Init method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitToolbase class; this provides us with al of the standard i Tool
functionality automatically. Any “extra’ keywords specified in the call to our Init
method are passed to the IDLitToolbase::Init method via the keyword inheritance
mechanism.

Because our iTool class will inherit from the IDLitTool base class, our tool will
automatically provide al of the standard features of the iTools. In addition, we
register the following custom items:

¢ A custom visualization type: Image-Contour. This visualization typeis
described in Chapter 6, “ Creating a Visualization”.

iTool Developer’s Guide Example: Simple iTool

104 Chapter 5: Creating an iTool
* A new operation: Example Resample. Thisoperation is described in Chapter 7,
“Creating an Operation”.

¢ A new filereader: Example TIFF Reader. Thisfile reader is described in
Chapter 9, “Creating a File Reader”.

* Weunregister the standard TIFF file writer, and register our anew filewriter:
Example TIFF Writer. Thisfile reader is described in Chapter 10, “ Creating a
File Writer”.

Finally, we return the value 1 to indicate successful initialization.
Class Definition

PRO exanpl elt ool __ Defi ne

struct = { exanpl eltool, $
I NHERI TS | DLi t Tool base $; Provides i Tool interface
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name exanpl elt ool , specifying that the structure inherits from the
IDLitToolbase class.

Launch Routine

Our iTool launch routine also usesthe class name exanpl elt ool . It acceptsasingle
data argument, which we assume will contain an image array.

Note
The code for this example iTool launch routine isincluded in the file
exanpl elt ool . pro intheexanpl es/ doc/ i t ool s subdirectory of the IDL
distribution. Enter

exanpl elt ool
at the IDL prompt to create an instance of theiTool, or
.conpi | e exanpl elt ool

to openthe. pro fileinthe IDL editor.

Example: Simple iTool iTool Developer’s Guide

Chapter 5: Creating an iTool 105

The code is shown below:
PRO exanpl eltool, data, IDENTIFIER = identifier, _EXTRA = _extra

IF (N_PARAMS() gt 0) THEN BEG N
oParnSet = OBJ_NEW' I DLitParaneterSet', $
NAME = 'exanple 1 paraneters', $
ICON = 'image', $
DESCRI PTI ON = ' Exanpl e tool paraneters')

I F (N_ELEMENTS(data) GI 0) THEN BEG N
oData = OBJ_NEW' | DLi t Dat al DLI magePi xel s')
result = oData->SetData(data, _EXTRA = _extra)
oPar nSet - >Add, oData, PARAMETER_NAME = '| magePi xel s'

; Create a default grayscale ranp.

ranp = Bl NDGEN(256)

oPalette = OBJ_NEW' | DLitDatal DLPalette', $
TRANSPOSE([[ranp], [ranp], [ranp]]), $
NAME = ' Pal ette')

oPar nfet - >Add, oPal ette, PARAVMETER_NAME = ' PALETTE

ENDI F
ENDI F
| TREA STER, 'Exanple 1 Tool', 'exanpleltool’

identifier = IDLI TSYS CREATETOOL(' Exanple 1 Tool',$
VI SUALI ZATI ON_TYPE = [' | mage- Contour'], $
I NI TI AL_DATA = oParnBet, _EXTRA = _extra, $
TITLE = ' First Exanple iTool")
END

Discussion

Our iTool launch routine accepts a single data argument. We also specify that our
launch routine should accept the IDENTIFIER keyword; we will use the variable
specified as the value of this keyword (if any) to return the iTool identifier of the new
iTool we cresate.

First, we check the number of non-keyword arguments that were supplied using the
N_PARAMS function. If an argument was supplied, we create an |DLitParameter Set
object to hold the data.

Next, we check to make sure the supplied data argument is not empty using the
N_ELEMENTS function. If the supplied argument contains data, we create an
IDLitDatal DLImagePixels object to contain the image data and add the object to our
parameter set object, assigning the parameter name' | magePi xel s' .

iTool Developer’s Guide Example: Simple iTool

106 Chapter 5: Creating an iTool

Note
In the interest of brevity, we do very little data verification in this example. We
could, for example, verify that the data argument contains atwo-dimensiona array
of aspecified type.

We next create adefault grayscale ramp in an IDLitDatal DL Palette object, and assign
this the parameter name' Pal ette' .

We use the ITREGISTER procedure to register our iTool class with the name
"Exanple 1 Tool ".

Finally, we call the IDLITSYS_CREATETOOL function with the registered name of
our iTool class, specifying thevisudization typeas' | mage- Cont our ' , whichisthe
name of our custom visualization.

Example: Simple iTool iTool Developer’s Guide

Chapter 6:
Creating a Visualization

This chapter describes the process of creating an iTool visualization type.

Overviewcoiiiiiinannn. 108 Registering aVisudization Type 130
Predefined i Tool Visualization Classes ... 109 Unregistering a Visualization Type 132
Creating aNew Visualization Type 115 Example: Image-Contour Visualization .. 134

iTool Developer’s Guide 107

108 Chapter 6: Creating a Visualization

Overview

A visualization type is an iTool component object class that contains core IDL
graphic objects (IDLgrPlot objects, for example), other iTool visualization
components, or both. Visualization type components can a so contain data. A number
of visualization types are predefined and included in the IDL iTools package. If none
of the predefined types suits your needs, you can create your own visualization type
by subclassing either from one of the predefined types or from the base
IDLitVisualization class on which all of the predefined types are based.

The Visualization Type Creation Process

To create anew iTool visualization type, you will do the following:

* Choose aniTool visuaization class on which your new visualization type will
be based. In almost all cases, you will base new visualization types either on
the IDLitVisualization class or on avisualization class that isitself based on
IDLitVisualization. The IDLitVisualization class automatically handles
selection, selection visuals, data ranges, and notification of data changes.

« Define the data parameters necessary to create a visualization of the new type.
« Define the properties of the visualization, and set default property values.

* Override methods used to get or set properties, react to changesin the
underlying data, and clean up, as necessary.

This chapter describes the process of creating a new visualization type based on the
IDLitVisualization class.

Overview iTool Developer’s Guide

Chapter 6: Creating a Visualization 109

Predefined iTool Visualization Classes

TheiTool system distributed with IDL includes a number of predefined visualization
classes. The visualization type (the TY PE keyword value of the visualization with
which it isinitialized) and the accepted data type(s) are shown for the predefined
visualization classes. You can include these visualization classesin an iTool directly
by registering the class with your iTool (as described in “ Registering a Visualization
Type’ on page 130). You can a so create anew visualization class based on one of the
predefined classes. Visualization classes are located in the

I'i b/itool s/ conponent s subdirectory of the IDL directory.

IDLitVisAXxis
Displays a single axis object.
Visualization type: IDLAXIS
Data Types Accepted
* None
IDLitVisColorbar
Displays acolor bar.
Visualization type: IDLCOLORBAR
Data Types Accepted
» Palettedata: IDLPALETTE

IDLitVisContour

Displays a two-dimensional or three-dimensional contour plot.
Visualization type: IDLCONTOUR
Data Types Accepted
e Zdata IDLARRAY2D
e XandY data IDLVECTOR
IDLitVisHistogram

Displays a histogram plot of the input data.
Visualization type: IDLPLOT

iTool Developer’s Guide Predefined iTool Visualization Classes

110 Chapter 6: Creating a Visualization

Data Types Accepted
» Histogram data: IDLVECTOR, IDLARRAY 2D, IDLARRAY 3D

IDLitVisimage
Displays an image.
Visualization type: IDLIMAGE
Data Types Accepted
¢ Imagedata: IDLIMAGE, IDLARRAY 2D
e Pdettedata: IDLPALETTE, IDLARRAY 2D
IDLitVislmagePlane
Displays an image extracted from a plane passing through volumetric data.
Visualization type: IDLIMAGE PLANE
Data Types Accepted
¢ Imagedata IDLIMAGE, IDLARRAY 2D
e Pdettedata: IDLPALETTE, IDLARRAY 2D

IDLitVisIntVol
Displays an interval volume.
Visualization type: IDLINTERNAL VOLUME
Data Types Accepted
¢ Volumedata: IDLARRAY 3D
» Palettedata: IDLPALETTE

« Volume dimensions, location, connectivity lists; IDLVECTOR
IDLitVislsosurface

Displays an isosurface created from existing volume data.
Visualization type: IDLISOSURFACE
Data Types Accepted

* Volumedata: IDLARRAY 3D

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 111

* Padettedata: IDLPALETTE

¢ Volume dimensions, location, connectivity lists. IDLVECTOR
IDLitVisLegend

Displays alegend that can contain multiple IDLitVisLegendContourltem,
IDLitVisLegendPlotlitem, and IDLitVisL egendSurfaceltem objects.

Visualization type: IDLLEGEND
Data Types Accepted
* None
IDLitVisLegendltem
Displays an item contained within alegend.
Visualization type: IDLLEGENDITEM
Data Types Accepted

* None
IDLitVisLight

Places alight abject in the iTool visualization window to illuminate surface and
volume objects.

Visuaization type: IDLLIGHT
Data Types Accepted
* None
IDLitVisLineProfile
Displays aline profile visualization.
Visualization type: IDLLINEPROFILE
Data Types Accepted
e Linedata (2D or 3D): IDLARRAY 2D
IDLitVisMapGrid

Displays alongitudinal/latitudinal grid.
Visualization type: IDLMAPGRID

iTool Developer’s Guide Predefined iTool Visualization Classes

112 Chapter 6: Creating a Visualization

Data Types Accepted
* None.
IDLitVisPlot
Displays a two-dimensional line plot.
Visualization type: IDLPLOT
Data Types Accepted
e XandY data IDLVECTOR
¢ Vertex data: IDLARRAY 2D
e Xandy error data: IDLVECTOR, IDLARRAY 2D

IDLitVisPlotProfile
Displays a two-dimensional plot profile.
Visualization type: IDLPLOT PROFILE
Data Types Accepted
¢ Image dataor line endpoints: IDLARRAY 2D

IDLitVisPlot3D

Displays a three-dimensional line plot.
Visuaization type: IDLPLOT3D
Data Types Accepted
e X,Y,and Z data: IDLVECTOR
* Vertex datae IDLARRAY 2D
* X, Y,and Z error data: IDLVECTOR, IDLARRAY 2D
IDLitVisPolygon
Displays a polygon annotation.
Visualization type: IDLPOLY GON
Data Types Accepted
¢ Vertex data: IDLVERTEX, IDLCONNECTIVITY

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 113

IDLitVisPolyline
Displaysasingle polyline.
Visualization type: IDLPOLYLINE
Data Types Accepted
e Vertex data: IDLVERTEX, IDLCONNECTIVITY
IDLitVisRoi
Defines and displays a polygonal region of interest.
Visualization type: IDLROI
Data Types Accepted
¢ Vertex data IDLARRAY 2D

IDLitVisShapePoints
Displays point vertices from a Shapefile.
Visualization type: IDLSHAPEPOINT
Data Types Accepted
¢ Vertex data IDLVERTEX, IDLCONNECTIVITY, IDLSHAPEPOINT
IDLitVisShapePolygon
Displays polygon vertices from a Shapefile.
Visualization type: IDLSHAPEPOLY GON
Data Types Accepted
* Vertex data: IDLVERTEX, IDLCONNECTIVITY, IDLSHAPEPOLY GON
IDLitVisShapePolyline
Displays polyline vertices from a Shapefile.
Visualization type: IDLSHAPEPOLYLINE
Data Types Accepted
¢ Vertex data IDLVERTEX, IDLCONNECTIVITY, IDLSHAPEPOLYLINE

iTool Developer’s Guide Predefined iTool Visualization Classes

114 Chapter 6: Creating a Visualization

IDLitVisSurface

Displays a three-dimensional surface plot.
Visualization type: IDLSURFACE
Data Types Accepted
« Z (surface) data: IDLARRAY 2D
« XandY data IDLVECTOR, IDLARRAY 2D
» Vertex color data: IDLVECTOR, IDLARRAY 2D
e Texture maps. IDLARRAY 3D, IDLARRAY 2D
e Pdettecolors: IDLARRAY 2D

IDLitVisText
Displays text string.
Visuadlization type: IDLTEXT
Data Types Accepted
» Location data: IDLVECTOR

IDLitVisVolume

Displays a three-dimensional volume rendering.
Visualization type: IDLVOLUME
Data Types Accepted

¢ Volumedata: IDLARRAY 3D

» Palettedata: IDLPALETTE

» Opacity table data: IDLOPACITY_TABLE

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 115

Creating a New Visualization Type

AniTool visualization class definition file must (at the least) provide methods to
initialize the visualization class, get and set property values, handle changes to the
underlying data, clean up when the visualization is destroyed, and define the
visualization class structure. Complex visualization types will likely provide
additional methods.

The process of creating avisualization type is outlined in the following sections:

“Creating an Init Method” on page 115

“Creating a Cleanup Method” on page 122

“Creating a GetProperty Method” on page 123

“Creating a SetProperty Method” on page 124

“Creating an OnDataChangeUpdate Method” on page 125
“Creating an OnDataDisconnect Method” on page 127
“Creating the Class Structure Definition” on page 128

Creating an Init Method

The visualization class Init method handles any initialization required by the
visualization object, and should do the following:

define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

register any data parameters used when creating visualizations of the new type

register any properties of your visualization type, and set property attributes as
necessary

create all the graphics objects needed by the visualization, and add them to the
visualization object

define a custom selection visual, if desired
perform other initialization steps as necessary

return the value 1 if the initialization steps are successful, or 0 otherwise

iTool Developer’s Guide Creating a New Visualization Type

116 Chapter 6: Creating a Visualization

Note
While the Init method registers data parameters for a visualization, it does not
accept data parametersitself. Data parameters are set in the OnDataChangeUpdate
method.

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The
Init method for a visualization type generally looks something like this;

FUNCTI ON MyVi sual i zation::Init, MYKEYWORD1 = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF_EXTRA = _extra

where MyMisualization isthe name of your visualization class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. See“ Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.

Superclass Initialization

The visualization class Init method should call the Init method of any required
superclass. For example, if your visualization class is based on an existing
visualization, you would call that visualization’s Init method:

success = sel f->SoneVi sualizationC ass::|nit(_EXTRA = _extra)

where SomeMisualizationClass is the class definition file for the visualization on
which your new visualization is based. The variable success will contain alif the
initialization is successful.

Note
Your visualization class may have multiple superclasses. In general, each
superclass’ Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is agood ideato check
whether the call to the superclass Init method succeeded. The following statement

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 117

checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with avalue of
0:

IF (sel f->SomeVisualizationdass::Init(_EXTRA = _extra) EQO0) THEN $
RETURN, O

This convention is used in all visualization classes included with IDL. RSI strongly
suggests that you include similar checksin your own class definition files.

Keywords to the Init Method

Properties of the visualization type class can be set in the Init method by specifying
the property names and values as IDL keyword-value pairs. In addition to any
keywords implemented directly in the Init method of the superclass on which you
base your class, the properties of the IDLitVisualization class are available to any
visualization class. See“IDLitVisualization Properties’ in the IDL Reference Guide
manual.

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.

Standard Base Class

While you can create your new visualization class from any existing visualization
class, in many cases, visualization classes you create will be subclassed directly from
the base class IDLitVisuaization:

IF (self->IDLitVisualization::Init(_EXTRA = _extra) EQO) $
THEN RETURN, O

The IDLitVisualization class provides the base i Tool functionality used in the
visualization classes created by RSI. See “ Subclassing from the IDLitVisualization
Class’ on page 128 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other visualization
classes that subclass from your visualization class may check this return value, as
your routine should check the value returned by any superclass Init methods called.

iTool Developer’s Guide Creating a New Visualization Type

118 Chapter 6: Creating a Visualization

Registering Parameters

Visualization types must register each data parameter used to create the visualization.
Data parameters are described in detail in Chapter 3, “Data Management”.

Register a parameter by calling the RegisterParameter method of the IDLitParameter
class:

sel f - >Regi st er Par anet er, Par nanet er Name, $
TYPES = [' DataTypel', ..., 'DataTypeN]

where Parameter Name is a string that defines the name of the parameter and the
TYPESkeyword is set equal to astring or array of strings specifying theiTool system
data types the parameter can represent. See “ Registering Parameters’ on page 57 for
additional details.

Registering Properties

Visualization types can register properties with the i Tool. Registered properties show
up in the property sheet interface, and can be modified interactively by users. The
iTool property interface is described in detail in Chapter 4, “ Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

sel f->Regi sterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 70 for details.

Property Aggregation

IDL objects can contain other objects; a visualization typeis, at one level, smply an
object container that holds the different graphics objects that make up avisualization.
TheiTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

sel f->Aggregate, Obj ect_Reference

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 119

where Object_Reference is areference to the object whose properties you want
aggregated into the visualization object. See * Property Aggregation” on page 77 for
additional details.

Note
The IDLitVisuaization::Add method includes an AGGREGATE keyword. This
keyword is simply a shorthand method of aggregating the properties of an object
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

sel f->Add, Object_Reference, [/ AGGREGATE
is the same as the following two calls:

sel f->Add, bject Reference
sel f->Aggregate, Object_Reference

Setting Property Attributes

If aproperty has aready been registered, perhaps by a superclass of your
visualization class, you can change the registered attribute values using the
SetPropertyAttribute method of the IDLitComponent class:

sel f->Set PropertyAttribute, ldentifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 74 for additional details.

Adding Graphics Objects to the Visualization

AniTool visualization type must contain at least one IDLit* visualization object or
IDLgr* graphics object. To add a visualization or graphics object, you must first
create an instance of the object using the OBJ_NEW function, then add the object
instance to the visualization using the Add method of the IDLitVisualization class:

Graphics_Cbject = OBJ_NEW' I DLitVi sCbject')
sel f->Add, G aphics_QObj ect

where IDLitVisObject is an actual IDL iTool visuaization class, such as
IDLitVisPlot.

In practice, you should also consider the following when adding a visualization or
graphics object to a visualization type:

iTool Developer’s Guide Creating a New Visualization Type

120 Chapter 6: Creating a Visualization

e Thevisuaization or graphics object reference should generally be placed in a
specific field of the visualization type’s class structure. This allows you access
to the object when you have the reference to the visualization object itself.

¢ Inmost cases, you will want to include the REGISTER_PROPERTIES
keyword in the call to OBJ_NEW when creating a visualization or graphics
object instance. This keyword does the work of registering al registrable
properties of the object automatically, relieving you from the need to manually
register the properties you want to show up in the visualization’s property
sheet.

¢ Including the PRIVATE keyword in the call to OBJ_NEW indicates that the
visualization or graphics object should not appear in the iTools visualization
browser itself; users gain access to the object’s properties viathe visualization
to which the object is being added.

A typical addition of agraphics object to avisualization looks like this:

self. _oPlot = OBJ_NEW'IDLitVisPlot', /REG STER PROPERTIES, $
/ PRI VATE)
sel f->Add, self._oPlot, /AGGEREGATE

Here, we create anew IDLitVisPlot object instance and place the object referencein
the _oPl ot field of the visualization’s class structure. The REGISTER_PROPERTIES
keyword ensuresthat all of the registrable IDLitVisPlot properties are registered with
the visualization automatically. Next, we use the Add method to add the object
instance to our visualization; this inserts the object into the visualization’s graphics
hierarchy. Finally, we use the AGGREGATE keyword to include all of the
IDLitVisPlot object’s registered properties in the visualization’s property sheet.

Passing Through Caller-Supplied Property Settings

If you haveincluded the_REF_EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. One of the thingsthis
allowsyou to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

I F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->MyVi sual i zation:: SetProperty, _EXTRA = _extra

where MyMisualization isthe name of your visualization class. Thisline hasthe effect
of passing any “extra’ keyword values to your visualization class SetProperty
method, where the keyword can either be handled directly or passed through to the

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 121

SetProperty methods of the superclasses of your class. See “ Creating a SetProperty
Method” on page 124 for details.

Example Init Method

The following example code shows avery simple Init method for avisualization type
named Exanpl eVi s. Thisfunction would beincluded (along with the class structure
definition routine and any other methods defined by the class) in afile named
exanpl evi s__defi ne. pro.

FUNCTI ON Exanpl eVis::lnit, _REF_EXTRA = _extra

; Initialize the superclass.

IF (self->IDLitVisualization::Init(/REJ STER_ PROPERTIES, $
TYPE=' Exanpl eVis', NAME=' Exanpl e Vi sualization Type', $
| CON='plot', /PRIVATE, _EXTRA = _extra) NE 1) THEN $

RETURN, O

; Register a paraneter
sel f->Regi sterParaneter, 'Y, DESCRIPTION="Y Plot Data', $
/1 NPUT, TYPES='|DLVECTOR , / OPTARGET

; Add a plotting synbol object and aggregate its properties
; into the visualization.

sel f._oSynbol = OBJ_NEW'IDLitSynbol', PARENT = self)

sel f - >Aggregate, self._oSynbol

Create an IDLitVisPlot object, setting its SYMBOL property to
; the synbol object we just created. Add the plot object to the
; visualization, and aggregate its properties.
self. oPlot = OBJ_ NEW'IDLitGPlot', /REG STER PROPERTIES, $
SYMBOL = sel f._oSynbol - >Get Synbol ())
sel f->Add, self. oPlot, /AGGREGATE

; Register an exanple property that holds a string val ue.
sel f - >Regi ster Property, 'Exanpl eProperty', $

/ STRING DESCRI PTI ON=" An exanpl e property', $

NAME=' Exanpl e Property', SENSITIVE = 1

Pass any extra keyword paraneters through to the SetProperty
; method.
I F (N_ELEMENTS(_extra) GI 0) THEN $

sel f->Exanpl eVis:: SetProperty, _EXTRA = _extra

;. Return success
RETURN, 1

END

iTool Developer’s Guide Creating a New Visualization Type

122

Chapter 6: Creating a Visualization

Discussion

The Exanpl eVi s classisbased on the IDLitVisualization class (discussed in
“Subclassing from the IDLitVisualization Class’ on page 128). Asaresult, all of the
standard features of an iTool visualization class are aready present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eVi s Init method does the following things:

1. CdlstheInit method of the superclass, IDLitVisualization. We use the
REGISTER_PROPERTIES keyword to ensure that all registrable properties of
the superclass are exposed in the ExampleVis object’s property sheet. We also
set the visualization type to be an “ExampleVis,” provide a Name for the
object instance, and provide an icon. Finally, we usethe EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
Exanpl eVi s Init method is called.

2. Registersan input parameter called Y that must be a vector. The OPTARGET
keyword specifiesthat the Y parameter can be the target for i Tool operations.

3. Creates aplotting symbol created from the IDLitSymbol class and aggregate
its properties with the other ExampleVis properties.

4. Createsan IDLIitGrPlot object that usesthe IDLitSymbol object for its plotting
symbols.

5. Registers an example property that holds a string value.
6. Passesany “extra’ keyword properties through to the SetProperty method.
7. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method

The visualization class Cleanup method handles any cleanup required by the
visualization object, and should do the following:

e destroy any objects created by the visualization that were not added to the
graphics hierarchy with acall to the Add method

e cal the superclass Cleanup method

Calling the superclass’ cleanup method will destroy any aobjects that were added to
the graphics hierarchy.

See“IDLitVisualization::Cleanup” in the IDL Reference Guide manual for additional
details.

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 123

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eVi s visualization type:

PRO Exanpl eVi s: : d eanup

; Clean up the |IDLitSynbol object we created.
OBJ_DESTROY, self._oSynbol

; Call superclass O eanup nethod
sel f->IDLitVisualization::d eanup

END
Discussion

The Cleanup method first destroys the IDLitSymbol object, which is not part of the
graphics hierarchy, then calls the superclass Cleanup method to destroy the objectsin
the graphics hierarchy.

Creating a GetProperty Method

The visualization class GetProperty method retrieves property values from the
visualization object instance or from instance data of other associated objects. The
method can retrieve the requested property value from the visualization object’s
instance data or by calling another class' GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

See “IDLitVisualization::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
Exanpl eVi s visualization type:

iTool Developer’s Guide Creating a New Visualization Type

124

Chapter 6: Creating a Visualization

PRO Exanpl eVi s:: Get Property, $
EXAMPLEPROPERTY = exanpl eProperty, $
_REF_EXTRA = _extra

| F ARG_PRESENT(exanpl eProperty) THEN BEGQ N
exanpl eProperty = sel f._exanpl eproperty
ENDI F

; get superclass properties
IF (N_ELEMENTS(_extra) GI 0) THEN $
sel f->IDLitVisualization::CGetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
mechanism allows propertiesto be retrieved from the ExampleVis class superclasses
without knowing the names of the properties.

Using the ARG_PRESENT function, the method checks for the presence of
keywords in the call to the GetProperty method. If akeyword is detected, it retrieves
the value of the associated property from the object’s instance data. In this example,
only one property (ExampleProperty) is specific to the Exanpl eVi s object.

Finally, the method calls the superclass’ GetProperty method, passing in al of the
keywords stored in the _ext r a structure.

Creating a SetProperty Method

The visualization class SetProperty method stores property valuesin the visualization
object’s instance data or in properties of associated objects. It sets the specified
property value either by storing the value directly in the visualization object’s
instance data or by calling another class' SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must belisted as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

See " IDLitVisualization::SetProperty” in the IDL Reference Guide manual for
additional details.

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 125

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
Exanpl eVi s visualization type:

PRO Exanpl eVi s: : Set Property, $
EXAMPLEPROPERTY = exanpl eProperty, $
_REF_EXTRA = _extra

| F (N_ELEMENTS(exanpl eProperty) GI 0) THEN BEG N
sel f. _exanpl eProperty = exanpl eProperty
ENDI F

I F (N_ELEMENTS(_extra) GI 0) THEN $
self->IDLitVisualization:: SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
mechanism allows properties to be set on the Exanpl eVi s class superclasses
without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If avalueisdetected, we set the value of the associated property. In
this example, only one property (ExampleProperty) is specific to the Exanpl eVi s
object. We set the value of the ExampleProperty directly in the Exanpl eVi s object’s
instance data.

Finally, we call the superclass’ SetProperty method, passing in al of the keywords
stored inthe _ext r a structure.

Creating an OnDataChangeUpdate Method

The visualization class OnDataChangeUpdate method takes care of updating the
visualization when one or more of the data parameters used to create the visualization
change their values. The tasks this method must perform are dependent on the type of
visualization involved and the data parameter that changes. The general ideais that
when the value of a data object changes, the OnDataChangeUpdate method for each
visualization that uses that datais called. The OnDataChangeUpdate method then
uses the GetData method to retrieve the changed data from the IDLitData object,
inspects the data and manipulates it as necessary, and uses the SetProperty method to
insert the new data values into the visualization object.

iTool Developer’s Guide Creating a New Visualization Type

126 Chapter 6: Creating a Visualization

See “IDLitParameter::OnDataChangeUpdate” in the IDL Reference Guide manual
and " Data Update M echanism” on page 61 for additional details.

Example OnDataChangeUpdate Method

The following example code shows a very simple OnDataChangeU pdate method for
the Exanpl eVi s visualization type:

PRO Exanpl eVi s: : OnDat aChangeUpdat e, oSubj ect, parnmNane
CASE STRUPCASE(par nNane) OF

' <PARAMETER SET>': BEG N
oPar ans = oSubj ect->Get (/ ALL, COUNT = nParam $
NAME = par anNanes)
FOR i = 0, nParam1 DO BEG N
IF (paramNanmes[i] EQ '') THEN CONTI NUE
oDat a = oSubj ect - >Get ByNanme(par amNanes[i])
I F (OBJ_VALI D(oData)) THEN $
sel f - >OnDat aChangeUpdat e, oData, paranmNanmes[i]
ENDFOR
END
"Y': BEGN
success = oSubj ect - >Get Dat a(dat a)
nDat a = N_ELEMENTS(dat a)
IF (nData GI 0) THEN BEG N
Set the m n/max val ues.
m nn = M N(data, MAX = maxx)
sel f. _oPl ot->Set Property, DATAY = TEMPORARY(data), $
M N_VALUE = mi nn, MAX_VALUE = naxx
ENDI F
END
ELSE: sel f->ErrorMessage, 'Unknown paraneter'
ENDCASE

END
Discussion

The OnDataChangeUpdate method must accept two arguments: an object reference
to the data object whose data has changed (oSubj ect in the previous example), and
a string containing the name of the parameter associated with the data object

(par mNane in the example).

Note
The string <PARAMETER SET> isaspecial case value for the second argument, used
to indicate that the object reference is not a single data object but a parameter set.
Cadlling OnDataChangeUpdate with a parameter set rather than a dataitem provides

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 127

asimple way to update a group of datavaluesin with asingle statement; this can be
very useful when creating the visualization for the first time.

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through al of the parametersin the
parameter set object, calling the OnDataChangeUpdate method again on each
parameter.

Next, we handle the parameter (Y) by calling the IDLitData:: GetData method on the
data object reference stored in the oSubj ect argument. We usethe N_ELEMENTS
function to determine whether any data was returned. If data was returned, we
determine the minimum and maximum values. Finally, we use the SetProperty
method to insert the changed data (using the TEMPORARY function to avoid making
acopy of the data) into the DATAY property of the IDLitVisPlot object stored in the
visualization’s_oPl ot class structure field. Similarly, we insert the new minimum
and maximum valuesinto the MIN_VALUE and MAX_VALUE properties of the
IDLitVisPlot object.

Creating an OnDataDisconnect Method

The visualization class OnDataDisconnect method is called automatically when a
data value has been disconnected from a parameter. A visualization class based on the
IDLitVisualization class must implement this method in order for changes or
additions to the data parameters to be updated automatically in the resulting
visualizations. The genera ideaisthat when adataitem is disassociated from a
visualization parameter, one or more properties of the visualization may need to be
reset to reasonable default values. For example, in the case of a plot visualization, if
the plotted data is disconnected, we want to reset the data ranges to their default
values and hide the plot visualization.

See “|DLitParameter::OnDataDisconnect” in the IDL Reference Guide manual for
additional details.

Example OnDataDisconnect Method
PRO Exanpl eVi s: : OnDat aDi sconnect, ParniNane
CASE Par mName OF
'Y': BEGAN
sel f._oPl ot->Set Property, DATAX = [0, 1], DATAY = [0, 1]

sel f._oPl ot->Set Property, /H DE
END

iTool Developer’s Guide Creating a New Visualization Type

128 Chapter 6: Creating a Visualization

ELSE:
ENDCASE

END

Discussion

The OnDataDisconnect method takes a single argument, which contains the upper-
case name of the parameter that was disconnected. In the case of our Exanpl eVi s
visualization, we only need to handle the Y parameter. If the Y parameter is
disconnected, we set the data ranges of the plot object to their default values (the
range between 0 and 1), and hide the plot visualization using the HIDE property.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 23 of the Building IDL Applications manual.

Subclassing from the IDLitVisualization Class

The IDLitVisualization class serves as a container for visualization objects displayed
inaniTool. The classincludes methods to handle changes to data and property values
automatically; in almost all cases, new visualization typeswill be subclassed from the
IDLitVisualization class. See “IDLitVisualization” in the IDL Reference Guide
manual for details on the methods and properties available to classes that subclass
from IDLitVisuaization.

Example Class Structure Definition

The following isthe class structure definition for the Exanpl eVi s visualization
class. This procedure should be the last procedure in afile named
exanpl evi s__defi ne. pro.

PRO Exanpl eVi s__Defi ne

struct = { ExanpleVis, $
I NHERI TS I DLi t Visualization, $
_oPlot: OBJ_NEW), $

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 129

_oSynbol : OBJ_NEW), $
_exanpl eProperty: "' $
}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
Exanpl eVi s.

Like many iTool visualizations, Exanpl eVi s is created as a subclass of the
IDLitVisualization class. Visualization classes that subclass from the
IDLitVisualization classinherit all of the standard i Tool visualization features, as
described in “ Subclassing from the IDLitVisualization Class’ on page 128.

The ExampleVis visualization class instance data includes two graphics objects: an
IDLitVisPlot object, to which areferenceisstored inthe_oPI ot class structurefield,
and an IDLitVisSymbol object, to which areferenceis stored inthe _oSynbol class
structure field. Both graphics objects are defined in the class structure definitions as
object instances, denoted by the presence of the OBJ_NEW() after the structure field
name. Finally, instance data for a string property named Exanpl ePr operty is
stored inthe _exanpl ePr opert y class structure field.

Note
This example isintended to demonstrate how simpleit can be to create a new
visualization class definition. While the class definition for a visualization class
with significant extra functionality will likely define additional structure fields, and
may inherit from other iTool classes, the basic principles are the same.

iTool Developer’s Guide Creating a New Visualization Type

130 Chapter 6: Creating a Visualization

Registering a Visualization Type

Before avisuaization of agiven type can be created by an iTool, the visualization
type’s class definition must be registered as being available to theiTool. Registering a
visualization type with theiTool links the class definition file containing the actual
IDL code that defines the visualization type with a simple string that names the type.
Code that creates a visuaization in an iTool uses the name string to specify which
type of visualization should be created. In addition, some operations and
manipulators will operate only on specific visualization types; these limits are also
specified using the name string.

Using IDLitTool::RegisterVisualization

In most cases, you will register avisualization type with theiTool in theiTool’s class
Init method. Registration ensures that the visualization type is available when the
iTool attempts to create a visualization. (See “Creating a New iTool Class’ on

page 85 for details on theiTool class Init method.)

To register avisualization, call the IDLitTool::RegisterVisualization method:

sel f->Regi sterVisual i zation, Visualization_Type, $
Vi sType_d ass_Nane

where Visualization_Type isthe string you will use when referring to the visualization

type, and VisType_Class Nameisastring that specifiesthe name of the classfile that
contains the visualization type's definition.

Note
ThefileVi sType_Cl ass_Nane__defi ne. pr o must exist somewherein IDL’s

path for the visualization type to be successfully registered.

See “IDLitTool::RegisterVisualization” in the IDL Reference Guide manual for
details.

Specifying Useful Properties

You can set any property of the IDLitVisualization and IDLitComponent classes
when registering a visualization. The following properties may be of particular
interest:

Registering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 131

ICON

A string value giving the name of anicon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “lcon Bitmaps’ on page 43 for details on where bitmap icon files are
located.

TYPE

A string or an array of strings indicating the types of datathat can be displayed by the
visualization. i Tools data types are described in Chapter 3, “ Data Management”. Set
this property to anull string (' ') to specify that all types of data can be displayed.

iTool Developer’s Guide Registering a Visualization Type

132 Chapter 6: Creating a Visualization

Unregistering a Visualization Type

If you are creating anew iTool from an existing iTool class, you may want to remove
avisualization type registered with the existing class from your new tool. This can be
useful if you have aniTool classthat implements all of the functionality you need, but
which registers a visualization type you don’t want included in your iTool. Rather
than recreating theiTool classto remove the visualization type, you could create your
new iTool classin such away that it inherits from the existing iTool class, but
unregisters the unwanted visualization.

Unregister avisualization type by calling the IDLitTool::UnregisterVisualization
method in the Init method of your iTool class:

sel f->Unregi sterVisualization, identifier
where identifier isthe string name used when registering the visualization.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitTool Surface class. If you wanted your
new tool to behave just like the i Surface tool, with the exception that it would not
handle 2D plot visualizations, you could include the following method call in your
iTool’s Init method:

sel f->Unregi sterVisualization, 'Plot'
Finding the Identifier String

To find the string used as the identifier parameter to the UnregisterVisualization
method, you can inspect the class file that registers the visualization (if the
visualization is registered by a user-created class), or use the Findldentifiers method
of the IDLitTool object to generate alist of registered visualizations. (Standard i Tool
visualization types are pre-registered within the iTool framework.)

If the visualization is registered in a user-created class, you could inspect the class
definition file to find a call to the RegisterVisualization method, which looks
something like this:

sel f->Regi sterVisualization, "Plot', "IDLitVisPlot', $
ICON = 'plot'

The first argument to the RegisterVisualization method (' Pl ot ') isthe string name
of the visualization type.

Alternatively, to generate alist of relative identifiers for all visualizations registered
with the current tool, use the following statements:

Unregistering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 133

voi d = | TGETCURRENT(TOOL=0Tool)
vislist = oTool ->Fi ndldentifiers('*/visualizations/*")
FOR i = 0, N_ELEMENTS(vislist)-1 DO PRINT, $
STRM D(vislist[i], STRPOCS(vislist[i], '/', /REVERSE_SEARCH) +1)

See“IDLitTool::Findldentifiers’ in the IDL Reference Guide manual for details.

iTool Developer’s Guide Unregistering a Visualization Type

134 Chapter 6: Creating a Visualization

Example: Image-Contour Visualization

This example creates a visualization type named exanpl el_vi sl nageCont our
that displays an image and overlays it with a contour based on the image data.

Note
The code for this example visualization type isincluded in the file
exanpl el_vi si magecont our __defi ne. pro intheexanpl es/ doc/itools
subdirectory of the IDL distribution. Enter
exanpl elt ool

at the IDL prompt to create an instance of aniTool that registers this visualization
type asits default visualization, or

.conpi |l e exanpl el_vi si magecont our

to open the. pr o filein the IDL editor.

Class Definition File

The class definition for exanpl el_vi sl mageCont our consists of an Init method,
an OnDataChangeUpdate method, and a class structure definition routine. Other
important methods — Cleanup, GetProperty, and SetProperty — are handled by the
superclass (I DLi t Vi sual i zat i on).

Aswith al object class definition files, the class structure definition routine isthe last
routinein the file, and the file is given the same name as the class definition routine
(with the suffix . pr o appended).

Init Method

The Init method is called when the examplel vislmageContour visualization is
created.

FUNCTI ON exanpl el_vi sl mageContour::lnit, _REF EXTRA = _extra
Initialize the superclass
IF (~self->IDLitVisualization::Ilnit($
NAMVE=' exanpl el_vi sl mageContour', $
ICON = "image', _EXTRA = _extra)) THEN RETURN, O

Regi ster the paraneters we are using for data

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 135

sel f - >Regi st er Paraneter, '|MAGEPI XELS' , $

DESCRI PTION = "I nmage Data', /INPUT, $

TYPES = ['1DLI MAGEPI XELS', '|DLARRAY2D], /OPTARGET
sel f->Regi sterParaneter, 'PALETTE , $

DESCRI PTION = 'Palette', /INPUT, /COPTIONAL, $

TYPES = [' | DLPALETTE',' | DLARRAY2D], / OPTARGET

Create objects and add to this Visualization
sel f._olmage = OBJ_NEW' I DLitVi sl mage', /PRI VATE)
sel f->Add, self._ol nage, / AGGREGATE
sel f._oContour = OBJ_NEW' IDLitVisContour', /PRI VATE)
sel f->Add, self._oContour, /AGGREGATE

Ret urn success
RETURN, 1

END
Discussion

Thefirstitemin our class definition file isthe Init method. The Init method's function
signature is defined first, using the classname exanpl el_vi sl mageCont our . Note
the use of the _REF_EXTRA keyword inheritance mechanism; this allows any
keywords specified in acall to the Init method to be passed through to routines that
are called within the Init method even if we do not know the names of those
keywords in advance.

First, we cal the Init method of the superclass. In this case, we are creating a subclass
of the IDLitVisualization class; this provides us with al of the standard i Tool
visualization methods automatically. Any “extra’ keywords specified in the call to
our Init method are passed to the IDLitVisualization::Init method via the keyword
inheritance mechanism. If the call to the superclass Init method fails, we return
immediately with avalue of 0.

We register two parameters used by our visualization: | MAGEPI XELS and PALETTE.
Both parameters are input parameters (meaning they are used to create the
visualization), and both can be the target of an operation. The | MAGEPI XELS
parameter can contain data of two iTool datatypes. | DLI MAGEPI XELS or

| DLARRAY2D. When data are assigned to the visualization's parameter set, only data
that matches one of these two types can be assigned to the | MAGEPI XEL S parameter.
Similarly, the PALETTE parameter can contain data of type | DLPALETTE or

| DLARRAY2D.

Next, we create the two visualization components that make up the
examplel visimageContour visualization type: an IDLitVisimage object and an
IDLitVisContour object. Each object is created by acall to the OBJ_NEW function;

iTool Developer’s Guide Example: Image-Contour Visualization

136 Chapter 6: Creating a Visualization

the newly-created object referenceis placed in afield of the

examplel visimageContour object’s instance data structure. We set the PRIVATE
property to prevent the IDLitVislmage and IDLitVisContour objects from showing
up in the visualization browser as separate items. The new visualization objects are
then added to the examplel_vislmageContour object using the Add method; the
AGGREGATE keyword specifies that the properties of each of the component
visualization objects will be displayed as properties of the

examplel visimageContour object itself.

Finally, we return 1, indicating a successful initialization.
OnDataChangeUpdate Method

The OnDataChangeUpdate method is called whenever the data associated with the
examplel_vislmageContour visualization object changes. This may include the
initial creation of the visualization, if data parameters are specified in the call to the
iTool launch routine that creates the visualization.

PRO exanpl el_vi sl mageCont our : : OnDat aChangeUpdat e, oSubject, $
par mNane, _REF_EXTRA = _extra

; Branch based on the value of the parnmNane string.
CASE STRUPCASE(par mNane) OF

The nethod was called with a paramter set as the argunent.
' <PARAMETER SET>': BEGA N

oPar ans = oSubj ect->Get (/ ALL, COUNT = nParam $
NAME = par anNanes)
FORi = 0, nParam 1 DO BEG N

| F (paramNanes[i] EQ'') THEN CONTI NUE
oDat a = oSubj ect - >Get ByNane(par anNanmes[i])
IF (OBJ_VALID(oData)) THEN $
sel f - >OnDat aChangeUpdat e, oData, paranmNanmes[i]
ENDFOR
END

; The nethod was called with an image array as the argunent.
"I MAGEPI XELS' : BEG N
voi d = sel f._ol nage- >Set Dat a(oSubj ect, $
PARAMETER_NAME = ' | MAGEPI XELS')
void = sel f._oContour->Set Dat a(oSubj ect, $
PARAVETER _NAME = ' Z')
Make our contour appear at the top OF the surface.
| F (oSubj ect - >CGet Dat a(zdata)) THEN $
sel f. _oCont our->Set Property, ZVALUE = MAX(zdat a)
END

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 137

; The method was called with a palette as the argunent.

" PALETTE : BEG N

voi d = sel f._ol mage- >Set Dat a(oSubj ect, $
PARAMETER_NAME = ' PALETTE')

void = sel f._oCont our->Set Dat a(oSubj ect, $
PARAMETER_NAME = ' PALETTE')

END

ELSE: ; DO nothi ng
ENDCASE

END
Discussion

The OnDataChangeUpdate method accepts the two required arguments: an object
reference to the data object whose data has changed (oSubj ect), and a string
containing the name of the parameter associated with the data object (par mNane).

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the specia case where the parameter
has the value <PARAMETER SET> by looping through all of the parametersin the
parameter set object, calling the OnDataChangeUpdate method again on each
parameter.

We handle the | MAGEPI XELS parameter by calling the IDLitParameter::SetData
method once on each of the two component visualizations, specifying that the input
data object oSubj ect corresponds to the | MAGEPI XELS parameter of the
IDLitVislmage object, and to the Z parameter of the IDLitVisContour object. We
also set the Z value of the IDLitVisContour object using the maximum data value of
the data contained in oSubj ect .

Finally, we handle the PALETTE parameter by calling the SetData method again, this
time to set the PALETTE parameters of both the IDLitVisimage and IDLitVisContour
objects.

OnDataDisconnect Method

The OnDataDisconnect method is called automatically when a data value has been
disconnected from a parameter.

PRO exanpl el_vi sl mageCont our : : OnDat aDi sconnect, ParnNane
CASE STRUPCASE(par mane) OF
"1 MAGEPI XELS' : BEG N
sel f->Set Property, DATA = 0

iTool Developer’s Guide Example: Image-Contour Visualization

138 Chapter 6: Creating a Visualization

sel f. _ol mage- >Set Property, /H DE
sel f. _oCont our - >Set Property, /H DE
END

' PALETTE' : BEG N

sel f. _ol mage- >Set Property, PALETTE = OBJ_NEW)

sel f->Set PropertyAttribute, 'PALETTE', SENSITIVE = 0
END

ELSE: ; DO nothing
ENDCASE

END
Discussion

The OnDataDisconnect method takes a single argument, which contains the name of
the parameter that was disconnected. In the case of our

exanpl el_vi sl mageCont our visualization, we handle the | MAGEPI XELS and
PALETTE parameters. For the | MAGEPI XELS parameter, we set the DATA property
of the parameter to 0, and hide both the image and the contour visualizations. For the
PALETTE parameter, we set the PALETTE property of the image to anull object, and
desensitize the property in the property sheet display.

Class Definition

PRO exanpl el_vi sl mageCont our __Defi ne
struct = { exanpl el_vislmgeContour, $
inherits IDLitVisualization, $
_oContour: OBJ_NEW), $
_olmage: OBJ_NEW) $

}
END

Discussion

Our class definition routine creates an IDL structure variable with the name
exanpl el_vi sl mageCont our, specifying that the structure inherits from the
IDLitVisualization class. The structure has two instance data fields named
_oCont our and_ol nage, which will contain object referencesto the
IDLitVisimage and IDLitVisContour objects that make up the
examplel_vislmageContour visualization.

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 7:

Creating an Operation

This chapter describes the process of creating an iTool operation.

OVEIVIEW ..ot 140
Predefined iTool Operations 142
Operations and the Undo/Redo System . . . 143
Creating aNew Data-Centric Operation . . 145
Creating a New Generalized Operation . .. 158

iTool Developer’s Guide

Operationsand Macros. 173
Registering an Operation 174
Unregistering an Operation 176
Example: Data Resample Operation 178

139

140

Chapter 7: Creating an Operation

Overview

An operation isan iTool component object class that can be used to modify selected
data, change the way avisuaization is displayed in the iTool window, or otherwise
affect the state of the iTool. Some examples of iTool operations are:

e performing the IDL SMOOTH operation on selected data,
* rotating a selected visualization by a specified angle,
e displaying data statistics.

A number of standard operations are predefined and included in the IDL iTools
package; if none of the predefined operations suits your needs, you can create your
own operation by subclassing either from the base IDLitOperation class on which all
of the predefined operations are based, from the IDLitDataOperation class, or from
one of the predefined operations.

The Operation Creation Process

Overview

To create anew iTool operation, you will do the following:

¢ Choose aniTool operation class on which your new operation will be based. In
most cases, the operation will act on the data underlying a visualization; in
these cases, you will base your new operation on the IDLitDataOperation
class. If your operation will affect something other than data— the appearance
of visualizations in theiTool window, or the value of some property — you
will base your new class on the IDLitOperation class. Both classes provide
support for the iTool undo/redo system, but operations that do not deal directly
with data require additional code to properly allow for undoing and redoing the
operations.

« Define the properties of the operation, and set default property values.

e |If the new operation acts directly on data (that is, if it is based on the
IDLitDataOperation class), provide an Execute method that performs the
operation using the current property values. Similarly, if the new operationis
more general and is based on the IDLitOperation class, provide a DoAction
method.

e Optionally provide a DoExecuteUl method to display a user interface for
operations that act directly on data.

* For generalized operations, provide UndoOperation and RedoOperation
methods to undo and redo the operation. These methods may in turn require

iTool Developer’s Guide

Chapter 7: Creating an Operation 141
that you provide methods to store values before and after the operationis
executed.

¢ Overide methods used to get or set properties, react to changesin the
underlying data, and clean up, as necessary.

This chapter describes the process of creating new operations based on the
IDLitDataOperation and I DLitOperation classes.

iTool Developer’s Guide Overview

142 Chapter 7: Creating an Operation

Predefined iTool Operations

TheiTool system distributed with IDL includes a number of predefined operations.
You can include these operationsin an iTool directly by registering the class with
your iTool (as described in “ Registering an Operation” on page 174). You can also
create a new operation class based on one of the predefined classes.

IDLitOpBytscl

Scales the values contained in atwo-dimensional array into the range of 0-255
Data Types Accepted
e IDLARRAY2D

IDLitOpConvolution

Displays adiaog that allows the user to choose convolution settings, then calls the
CONVOL function on the selected data using the specified parameters.

Data Types Accepted
* |IDLVECTOR, IDLARRAY 2D, IDLIMAGE

IDLitOpCurvefitting

Displaysadialog that allows the user to select a curve-fitting algorithm, then callsthe
appropriate IDL routine to perform the fit. The fitted curve is then created and
inserted into the visualization as a new plot line.

Data Types Accepted
 |IDLVECTOR

IDLitOpSmooth

Callsthe SMOOTH function on the selected data. The smoothing window parameter
can be set by the user viathe property sheet interface of the Operations browser.

Data Types Accepted
* |IDLVECTOR, IDLARRAY2D

Note
There are many additional operations (named with the prefix “idlitop”) in the
l'i b\it ool s\ conponent s subdirectory of your IDL installation.

Predefined iTool Operations iTool Developer’s Guide

Chapter 7: Creating an Operation 143

Operations and the Undo/Redo System

TheiTools system provides users with the ability to interactively undo and redo
actions performed on visualizations or dataitems. Asan iTool developer, you will
need to provide some code to support the undo/redo feature; the amount of code
required depends largely on the type of operation your operation class performs. The
main dividing line is between data-centric operations that act directly on the data that
underlies avisualization, and operations that act in amore generalized way, changing
some value that may not be directly related to adataitem. In most cases, operations
that act directly on data are based on the IDLitDataOperation class, whereas
operations that are more generalized are based on the IDLitOperation class.

Data-Centric Operations

Undo/redo functionality is handled automatically for data-centric operations based on
the IDLitDataOperation class. The following things happen when the user requests an
operation:

For each selected item, data that matches the type supported by the operationis
extracted and passed to the operation’s Execute method. The Execute method
modifies the datain place. When the data changes, all visualizations that
observe the dataitem are notified, and update accordingly.

If the user undoes the operation, the original data values are restored. By
default, the original values are cached before the Execute method is called, and
undoing the operation simply retrieves the data values from the cache. If the
REVERSIBLE_OPERATION property of the IDLitDataOperation object is
set, however, the original values are not cached, and the UnExecute method is
called when the user undoes the operation. The UnExecute method must exist
and must reverse the action performed by the Execute method, restoring the
dataitemsto their original values. Using the REVERSIBLE_OPERATION
property allows you to avoid caching the data set (which may be large) when
the operation performed on the datais easily reversed by computation.

If the user redoes the operation, the data values computed by the Execute
method are restored. By default, the Execute method is simply called again. If
the EXPENSIVE_OPERATION property of the IDLitDataOperation object is
set, however, the computed values are cached after the Execute method is
called, and redoing the operation simply restores the cached data values. Using
the EXPENSIVE_OPERATION property allows you to avoid having to
recompute a computationally-intensive operation each time the user undoes
and then redoes the operation.

iTool Developer’s Guide Operations and the Undo/Redo System

144 Chapter 7: Creating an Operation

Generalized Operations

To provide undo/redo functionality, generalized operations (those based on the
IDLitOperation class) must provide methods that record the initial and final values of
the item being modified, along with methods that use the recorded values to undo or
redo the operation. The following things happen when the user requests an operation:

¢ The DoAction method creates an IDLitCommandSet object to hold the initial
and final values.

¢ The RecordInitial Values method records the original values of the specified
target objects. Values are stored as dataitems in IDLitCommand objects,
which are in turn stored in the IDLitCommandSet object.

¢ The RecordFinalValues method retrieves the IDLitCommand objects created
by the Recordlnitial Values method from the IDLitCommandSet object, and
records the new values of the target objects as additional itemsin those
IDLitCommand objects.

e If the user undoes the operation, the UndoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the values.

¢ If the user redoes the operation, the RedoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the val ues.

Operations and the Undo/Redo System iTool Developer’s Guide

Chapter 7: Creating an Operation 145

Creating a New Data-Centric Operation

iTool operationsthat act primarily on data are based on the I DLitDataOperation class.
The class definition file for an IDLitDataOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, and define the operation class structure. Complex operations will likely
provide additional methods.

How an IDLitDataOperation Works

When an IDLitDataOperation is requested by a user, the following things occur:

1. Aswith any operation, execution commences when the DoAction method is
called. When called, the IDLitDataOperation retrieves the currently-sel ected
items. If nothing is selected, the operation returns.

2. For each selected item, the data objects of the parameters registered as
“operation targets’ are retrieved.

3. Thedataobjectsare queried for i Tool datatypesthat match the types supported
by the IDLitDataOperation.

For each data object that includes data of an iTool data type supported by the
IDLitDataOperation, the following things occur:

1. Thedatafrom the data object isretrieved.

2. If the IDLitDataOperation does not have the REVERSIBLE OPERATION
property set, a copy of the datais created and placed into the undo-redo
command set.

The Execute method is called, with the retrieved data as its argument.

If the Execute method succeeds and the I DLitDataOperation has the
EXPENSIVE_OPERATION property set, acopy of the resultsis placed into
the undo-redo command set.

5. Theresult of the IDLitDataOperation is placed in the data object. This action
will cause all visualization items that use the data object to update when the
operation is compl eted.

Once all selected data items have been processed, the undo-redo command set is
placed into the system undo-redo buffer for later use.

iTool Developer’s Guide Creating a New Data-Centric Operation

146 Chapter 7: Creating an Operation

Creating an IDLitDataOperation

The process of creating an IDLitDataOperation is outlined in the following sections:
e “Creating an Init Method” on page 146
e “Creating a Cleanup Method” on page 150
e “Creating an Execute Method” on page 151
e “Creating a DoExecuteUl Method” on page 152
e “Creating a GetProperty Method” on page 153
e “Creating a SetProperty Method” on page 154
e “Creating an UndoExecute Method” on page 155
e “Creating the Class Structure Definition” on page 156

Creating an Init Method
The operation class Init method handles any initialization required by the operation
object, and should do the following:

e define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

¢ cal the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

e register any properties of the operation, and set property attributes as necessary
e perform other initialization steps as necessary

« return thevaue 1 if theinitialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of an item
from amenu, they generally do not accept any keywords of their own.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 147

The function signature of an Init method for an operation generally looks something
likethis:

FUNCTI ON MyOperation::Init, _REF_EXTRA = _extra
where MyOperation is the name of your operation class.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “ Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation classisbased on an existing operation, you
would call that operation’s Init method:

success = sel f->SomeQCperationC ass::Init(_EXTRA = _extra)

where SomeOperationClass is the class definition file for the operation on which
your new operation is based. The variable success containsal if the initialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
O:

IF (self->SomeCperationd ass::Init(_EXTRA = _extra) EQ0) THEN $
RETURN, O

This convention is used in all operation classes included with IDL. RS| strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords

iTool Developer’s Guide Creating a New Data-Centric Operation

148

Chapter 7: Creating an Operation

implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
available to any operation class. See “IDLitOperation Properties” and
“IDLitComponent Properties’ in the IDL Reference Guide manual.

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, data-centric operation classes you create will be subclassed directly from
the base class I DLitDataOperation:

IF (self->IDLitDataCperation::Init(_EXTRA = _extra) EQO0) $

THEN RETURN, 0

The IDLitDataOperation class provides the base i Tool functionality used in the data-
centric operation classes created by RSI. See “ Subclassing from the
IDLitDataOperation Class’ on page 156 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with the iTool. Registered properties show up in
the property sheet interface, and can be modified interactively by users. TheiTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

sel f->Regi sterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 70 for details.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 149

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

sel f->Set PropertyAttribute, ldentifier

where ldentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 74 for additional details.

Example Init Method

The following example code shows a very simple Init method for an operation named
Exanpl eDat aOp. This function would be included (along with the class structure
definition routine and any other methods defined by the class) in afile named
exanpl edat aop__defi ne. pro.

FUNCTI ON Exanpl eDataQp: : I nit, _REF EXTRA = _extra

Initialize the superclass.
IF (self->IDLitDataQperation::Init(TYPES=['IDLIMAGE'], $
NAME=' Exanpl e Data Operation', |CON='sum, $
_EXTRA = _extra) NE 1) THEN $
RETURN, O

Regi ster a property that holds a byte val ue.
sel f->Regi sterProperty, 'ByteTop', $
DESCRI PTI ON=' An exanpl e property', $
NAME=' Byt e Threshold', SENSITIVE = 1

Unhi de t he SHOW EXECUTI ON_Ul property.
sel f->Set PropertyAttri bute, 'SHON EXECUTI ON U ', H DE=0

Ret urn success
RETURN, 1

END
Discussion

The Exanpl eDat aOp classis based on the IDLitDataOperation class (discussed in
“Subclassing from the IDLitDataOperation Class’ on page 156). Asaresult, all of
the standard features of an iTool data operation are already present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the

iTool Developer’s Guide Creating a New Data-Centric Operation

150 Chapter 7: Creating an Operation

keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eDat aOp Init method does the following things:

1. CdlstheInit method of the superclass, IDLitDataOperation. We use the
TYPES keyword to specify that our operation works on data that has the i Tool
datatype' | DLI MAGE' , provide aname for the object instance, and provide an
icon. Finally, we use the _EXTRA keyword inheritance mechanism to pass
through any keywords provided when the Exanpl eDat aOp Init method is
called.

2. Registers aproperty that holds a byte value.
3. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method
The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:
« destroy any pointers or objects created by the operation
e cal the superclass Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation classis based on the IDLitDataOperation class, and does not
create any pointers or objects of its own, the Cleanup method is not strictly
required. It is always safest, however, to create a Cleanup method that calls the
superclass’ Cleanup method.

See“IDLitDataOperation::Cleanup” in the IDL Reference Guide manual for
additional details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eDat aOp operation:

PRO Exanpl eDat aOp: : Cl eanup

; Clean up supercl ass
sel f->| DLi t Dat aOper ati on: : Cl eanup

END

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 151

Discussion

Since our operation’s instance data does not include any pointers or object references,
the Cleanup method simply calls the superclass Cleanup method.

Creating an Execute Method

The operation class Execute method does the computational work of a data-centric
operation; it is called automatically when theiTool user requests an operation based
on the IDLitDataOperation class. The Execute method must accept a single argument
that contains the raw data associated with an item selected by the user.

The fact that the raw datais passed to the execute method means that the Execute
method itself does not need to “unpack” a data object before performing the
operations, alowing rapid and simple operation execution. For example, if the
operation expects data of the iTools data type | DLARRAY2D, the iTool system will
include the selected two-dimensional array as the Data argument.

The actual processing performed by the Execute method depends entirely on the
operation.

Example Execute Method

The following example code shows a simple Execute method for the

Exanpl eDat aOp operation, which will invert the values of the supplied data. Since
our ExampleDataOp operation works on image data, this means the operation hasthe
effect of producing the negative image.

FUNCTI ON Exanpl eDat aQp: : Execut e, data

If byte data then offsets are 0 and 255, otherw se
use data m ni mum and nmaxi mum

of fsetMax = (Sl ZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMn = (Sl ZE(data, /TYPE) eq 1) ? Ob : M N(data)
data = of fset Max - TEMPORARY(data) + offsetMn
RETURN, 1
END
Discussion

When our Exanpl eDat aQp operation isinvoked by a user, the iTool system
automatically checksto see which items are selected in the visualization window. For
each selection, the i Tool system extracts any data of type IDLIMAGE and passes that
data to the Execute method as an IDL array. Our Execute method then finds the
minimum and maximum values, and inverts the data val ues.

iTool Developer’s Guide Creating a New Data-Centric Operation

152 Chapter 7: Creating an Operation

Creating a DoExecuteUl Method

Suppose we want to collect some information from the user before executing our
operation. If the operation class sets the SHOW_EXECUTION_UI property, the
iTool system will call the DoExecuteUl method before calling the Execute method.
The DoExecuteUl method is responsible for displaying a user interface that collects
the appropriate information and storing that information in properties of the operation
object.

Note
iTools provided with IDL that need to collect user input in this manner use the
Ul service mechanism, described in Chapter 11, “iTool User Interface
Architecture”. Whileit is possible for the DoExecuteUl method to perform all the
necessary functions directly, using a Ul serviceis the preferred method.

Two predefined user interface services are provided for use in DoExecuteUl
methods:

¢ The PropertySheet Ul service displays the operation’s property sheet before
execution.

¢ For operations that return atwo-dimensional array, the Operation Preview Ul
service displays the operation’s property sheet and a small window that
previews the result of the operation.

See " Predefined iTool Ul Services” on page 295 for additional details.
Example DoExecuteUl Method

The following example code shows a simple DoExecuteUl method for the
Exanpl eDat aOp operation. This method relies on a Ul service named
' Exanpl eDat aQp' being registered with the current iTool.

FUNCTI ON Exanpl eDat aOp: : DoExecut eUl

oTool = self->GetTool ()
IF (oTool EQ OBJ_NEW)) THEN RETURN, O

RETURN, oTool - >DoUl Servi ce(' Exanpl eDat a®p', self)

END

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 153

Discussion

If the SHOW_EXECUTION_UI property is set on our ExampleDataOp operation
object, the DoExecuteUl method is called automatically when the user invokes the
operation. This method does the following:

1. Retrieve areference to the current iTool object using the GetTool method of
the IDLitIMessaging class. (IDLitIMessaging is a superclass of
IDLitOperation, and thus of IDLitDataOperation.)

2. If theretrieved iTool object referenceis anull object reference, no data about
the current tool is available, so we return immediately without calling the Ul
service.

3. Call the ExampleDataOp Ul service. Since our ExampleDataOp operation has
only one property of its own (ByteTop), the ExampleDataOp Ul presumably
allows the user to set this value. See Chapter 13, “ Creating a User Interface
Service” for discussion of Ul services.

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class' GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitDataOperation::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
Exanpl eDat aOp operation:

PRO Exanpl eDat aQp: : Get Property, $
BYTETOP = byteTop, _REF EXTRA = _extra

| F ARG_PRESENT(byt eTop) THEN BEG N
byteTop = self._byteTop
ENDI F

iTool Developer’s Guide Creating a New Data-Centric Operation

154

Chapter 7: Creating an Operation

; get superclass properties
I F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->1DLitDataCperation:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows properties to be retrieved from the Exanpl eDat aOp class
superclasses without knowing the names of the properties.

Using the ARG_PRESENT function, we check for the presence of keywordsin the
call to the GetProperty method. If akeyword is detected, we retrieve the value of the
associated property. In this example, only one property (ByteTop) is specific to the
Exanpl eDat aOp object. We retrieve the value of the ByteTop property directly from
the Exanpl eDat aOp object’s instance data.

Finally, we call the superclass' GetProperty method, passing in all of the keywords
stored inthe _ext r a structure.

Creating a SetProperty Method

The operation class SetProperty method stores property values in the operation
object’sinstance dataor in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
data or by calling another class’ SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the operation class or one of its
superclasses.

See “IDLitDataOperation:: SetProperty” in the IDL Reference Guide manual for
additional details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
Exanpl eDat aOp operation:

PRO Exanpl eDat aOp: : Set Property, BYTETOP = byteTop, $
_REF_EXTRA = _extra

I'f (N_ELEMENTS(byteTop) GT 0) THEN BEG N

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 155

sel f._byteTop = byteTop
ENDI F

| F (N_ELEMENTS(extra) GT 0) THEN $
sel f->| DLi t Dat aOperation:: Set Property, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
allows properties to be set on the Exanpl eDat aOp class superclasses without
knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If avalueis detected, we set the value of the associated property. In
this example, only one property (ByteTop) is specific to the Exanpl eDat aQp object.
We set the value of the ExampleProperty directly in the Exanpl eDat aOp object’s
instance data.

Finally, we call the superclass’ SetProperty method, passing in al of the keywords
stored inthe _ext r a structure.

Creating an UndoExecute Method

The operation class UndoExecute method is called when the user undoes an
invocation of the operation and the REVERSIBLE_OPERATION property is set on
the operation object. (See “ Operations and the Undo/Redo System” on page 143 for
details on how undo and redo are handled in different situations.) The UndoExecute
method must reverse the effect of the Execute method.

The actual processing performed by the UndoExecute method depends entirely on the
operation.
Example UndoExecute Method
The following example code shows a simple UndoExecute method for the
Exanpl eDat aOp operation, which reverses the operation of the Execute method.
FUNCTI ON Exanpl eDat aQp: : UndoExecut e, data

If byte data then offsets are 0 and 255, otherwi se
use data m ni mum and naxi num
of fset Max = (Sl ZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMn = (Sl ZE(data, /TYPE) eq 1) ? Ob : M N(data)
data = of fset Max - TEMPORARY(data) + offsetMn

iTool Developer’s Guide Creating a New Data-Centric Operation

156 Chapter 7: Creating an Operation

RETURN, 1

END
Discussion

When the user undoes an invocation of our ExampleDataOp operation, the iTool
system supplies the data that were computed by the Execute method when the
operation was invoked. Our UndoExecute method then reverses the original
operation.

Creating the Class Structure Definition

When any IDL object is created, IDL looksfor an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The abject class structure must be defined before any
objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 23 of the Building IDL Applications manual.

Subclassing from the IDLitDataOperation Class

The IDLitDataOperation class simplifies the creation of operations that act only on
data (as opposed to acting on the visual representation of that data) by providing
methods that automate much of the process of execution and storing undo/redo data.
If your operation class modifies data, you will aimost certainly subclass from
IDLitDataOperation, or from another operation that subclasses from
IDLitDataOperation. See “|IDLitDataOperation” in the IDL Reference Guide manual
for details on the methods and properties available to classes that subclass from
IDLitDataOperation.

Example Class Structure Definition

The following isthe class structure definition for the Exanpl eDat aOp operation
class. This procedure should be the last procedure in afile named
exanpl edat aop__defi ne. pro.

PRO Exanpl eDat aOp__Defi ne

struct = { Exanpl eDat aOp, $
I NHERI TS | DLi t Dat aCperation, $
_byteTop: 0B $

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 157

}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case,

Exanpl eDat aOp.

Like many iTool operationsthat act on data, Exanpl eDat aOp is created as a subclass
of the IDLitDataOperation class. Operation classes that subclass from
IDLitDataOperation classinherit methods and properties that make it easy to perform
operations that affect datain aniTool.

The ExampleDataOp Operation class instance data includes a single property; a byte
valuethat is stored inthe byt eTop class structure field.

Note
This example is intended to demonstrate how simple it can be to create a new
operation class definition. While the class definition for an operation class with
significant extra functionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.

iTool Developer’s Guide Creating a New Data-Centric Operation

158 Chapter 7: Creating an Operation

Creating a New Generalized Operation

Generalized operations are iTool operationsthat are not limited to acting on data that
underlies a visualization. Generalized operations are based on the IDLitOperation
class. The class definition file for an IDLitOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, undo and redo the operation, and define the operation class structure.
Complex operations will likely provide additional methods.

How an IDLitOperation Works

When an IDLitOperation is requested by a user, the operation’s DoA ction method
(which must be provided by the operation class developer) is called. The DoAction
method is responsible for doing the following:

1. Retrieving the currently selected items and determining which items the
operation should be applied to.

Creating an IDLitCommandSet object to contain undo/redo information.

3. Recording the initia values of the selected objects in the IDLitCommandSet
object, if necessary.

4. Performing the actions associated with the operation.

Recording the final values of the selected objects in the IDLitCommandSet
object, if necessary.

6. Returning the IDLitCommandSet object.
Creating an IDLitOperation

The process of creating an IDLitDataOperation is outlined in the following sections:
e “Creating an Init Method” on page 159
e “Creating a Cleanup Method” on page 163
e “Creating a DoAction Method” on page 163
e “Creating a Recordlnitial Values Method” on page 166
e “Creating a RecordFinalValues Method” on page 167
e “Creating a GetProperty Method” on page 168
e “Creating a SetProperty Method” on page 168

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 159

e “Creating an UndoOperation Method” on page 169
e “Creating a RedoOperation Method” on page 170
e “Creating the Class Structure Definition” on page 171

Creating an Init Method
The operation class Init method handles any initialization required by the operation

object, and should do the following:

e define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

e cal the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

e register any properties of the operation, and set property attributes as necessary
e perform other initialization steps as necessary

« returnthevalue 1if theinitialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of anitem
from amenu, they generally do not accept any keywords of their own.

The function signature of an Init method for an operation generally looks something
like this:

FUNCTI ON MyOQperation::Init, _REF_ EXTRA = _extra
where MyOperation is the name of your operation class.

Note
Always use keyword inheritance (the_ REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “Keyword Inheritance” in Chapter 4

iTool Developer’s Guide Creating a New Generalized Operation

160 Chapter 7: Creating an Operation

of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation classisbased on an existing operation, you
would call that operation’s Init method:

success = sel f->SonmeQperationC ass::Init(_EXTRA = _extra)

where SomeOperationClass is the class definition file for the operation on which
your new operation is based. The variable success containsal if the initialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than ssimply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
(0

I F (sel f->Some(perationd ass::Init(_EXTRA = _extra) EQO) THEN $
RETURN, O

This convention is used in all operation classes included with IDL. RS| strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
available to any operation class. See “IDLitOperation Properties” and
“IDLitComponent Properties’ in the IDL Reference Guide manual.

Note
Always use keyword inheritance (the _EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” in Chapter 4 of

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 161

the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, operations that do not act directly on the data that underlies a
visualization will be subclassed directly from the base class IDLitOperation:

IF (self->IDLitOperation::Init(_EXTRA = _extra) EQO0) $

THEN RETURN, 0

The IDLitOperation class provides the base iTool functionality used in all operation
classes created by RSI. See “ Subclassing from the IDLitOperation Class’ on
page 172 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with the iTool. Registered properties show up in
the property sheet interface, and can be modified interactively by users. TheiTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

sel f->Regi sterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 70 for details.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

sel f->Set PropertyAttribute, ldentifier

iTool Developer’s Guide Creating a New Generalized Operation

162 Chapter 7: Creating an Operation

where |dentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 74 for additional details.

Example Init Method

Thefollowing example code shows a very simple Init method for an operation named
Exanpl eQp. Thisfunction would be included (along with the class structure
definition routine and any other methods defined by the class) in afile named
exanpl eop__define. pro.

FUNCTI ON Exanpl eQp: : I nit, _REF EXTRA = _extra

Initialize the superclass.

IF (self->IDLitOperation::Init(TYPES=['I|DLARRAY2D], $
NAVE=' Exanpl e Operation', | CON='generic_op', $
_EXTRA = _extra) NE 1) THEN $

RETURN, O

Unhi de t he SHOW EXECUTI ON_Ul property.
sel f->Set PropertyAttribute, 'SHON EXECUTION_U ', H DE=0

Return success
RETURN, 1

END
Discussion

The Exanpl e(p classis based on the IDLitOperation class (discussed in
“Subclassing from the IDLitOperation Class’ on page 172). As aresult, al of the
standard features of an iTool operation are already present. We don't define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eQp Init method does the following things:

1. CadlstheInit method of the superclass, IDLitOperation. We use the TY PES
keyword to specify that our operation works on data that has the iTool data
type' | DLARRAY2D , provide a Name for the object instance, and provide an
icon. Finally, we use the EXTRA keyword inheritance mechanism to pass
through any keywords provided when the Exanpl eQp Init method is called.

2. Returnstheinteger 1, indicating successful initialization.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 163

Creating a Cleanup Method

The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:

e destroy any pointers or objects created by the operation
e cal the superclass Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation classis based on the I DLitOperation class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See “IDLitOperation::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eOp operation:

PRO Exanpl eOp: : C eanup

; Clean up supercl ass
sel f->I DLi t Operati on:: C eanup

END
Discussion

Since our operation does not have any instance data of its own, the Cleanup method
simply calls the superclass Cleanup method.

Creating a DoAction Method

The operation class DoAction method is called by the iTool system when an
operation is requested by the user. (Note that data-centric operations do not need to
implement the DoA ction method because it isimplemented by the
IDLitDataOperation classitself.) The DoAction method is responsible for the
following:

iTool Developer’s Guide Creating a New Generalized Operation

164

Note

Chapter 7: Creating an Operation

determining which abjects the operation should be applied to (generally, but
not always, the objects that are selected when the operation is invoked)

retrieving the datafrom the selected objects
creating an I DLitCommandSet object that will contain undo/redo data

saving the state of the selected objects before the actions associated with the
operation are performed in the command set object

performing the requested actions on the selected objects

saving the state of the selected objects after the actions associated with the
operation are performed in the command set object

returning the command set object

If your operation changes the values of its own registered properties (as the result of
user interaction with adialog or other interface element called by DoUI Service, for
example), be sure to call the Recordinitia Values and RecordFinal Values methods.
This ensures that changes made through the dialog are placed in the undo-redo
transaction buffer.

Example DoAction Method

The following example code shows a simple DoAction method for the Exanpl eQp
operation. This operation retrieves the STY LE property of any selected
IDLitVisSurface objects and incrementsits value by 1. Repeated invocations of this
operation would cause the selected surfaces to loop through the seven available
surface styles.

FUNCTI ON Exanpl eQp: : DoActi on, oTool

Make sure we have a valid i Tool object.
IF ~ OBJ_VALID(oTool) THEN RETURN, OBJ_NEW)

Get the selected objects
oTargets = oTool - >CGet Sel ect edl t ens()

Select only IDLitVisSurface objects. If there are

no surface objects selected, return a null object.
surfaces = OBJ_NEW)
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEG N

I F (OBJ_I SA(oTargets[i], '"IDLitVisSurface')) THEN BEG N
surfaces = OBJ_VALID(surfaces) ? $
[surfaces, oTargets[i]] : oTargets[i]
ENDI F

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 165

ENDFOR
| F (~OBJ_VALI D(surfaces)) THEN RETURN, OBJ_NEW)

; Create a command set:
oCmdSet = sel f->|DLit Operation:: DoAction(oTool)

;. Record the initial values

IF (~ self->Recordlnitial Val ues(oCndSet, surfaces, '')) THEN $
BEA N
OBJ_DESTROY, oCndSet
RETURN, OBJ_NEW)

ENDI F

; Increnment the style index for each surface.
FOR i = 0, N_ELEMENTS(surfaces)-1 DO BEG N
; Retrieve the current surface style and increment it
surfaces[i]->Cet Property, STYLE = styl el ndex
| F stylelndex eq 6 THEN BEG N
stylelndex =0
ENDI F ELSE BEG N
stylelndex += 1
ENDELSE

; Set the new surface style
surfaces[i]->SetProperty, STYLE = styl el ndex
ENDFOR

oTool - >Ref reshCur r ent W ndow

: Record the final val ues
result = sel f->RecordFi nal Val ues(oCrdSet, surfaces, '')

RETURN, oCndSet
END

Discussion
The ExampleOp operation DoAction method does the following things:

1. Checksthe validity of theiTool object passed to the DoAction method.

2. Retrievesthelist of selected objects from the iTool object.

3. Filtersout any selected objects that are not IDLitVisSurface objects.

4. Cadlsthe superclass DoAction method to create an IDLitCommandSet object.

iTool Developer’s Guide Creating a New Generalized Operation

166 Chapter 7: Creating an Operation

5. Cadlsthe Recordlnitial Values method to record the relevant valuesin the
command set object before the operation is performed.

6. Loopsthrough thelist of IDLitVisSurface objects and incrementsthe STYLE
property of each by 1.

7. Cdlsthe RecordFina Values method to record the relevant values in the
command set object after the operation has been performed.

8. Returnsthe command set object.
Creating a RecordInitialValues Method

The operation class Recordlnitial Values method is responsible for recording the
appropriate “before” values from the specified objects in the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordInitialValues Method

The following example code shows a simple Recordinitial Values method for the
Exanpl eQp operation. An IDLitCommand object is created for each of the target
objects, and the value of the STY LE property of each object isrecorded asan Itemin
the command object.

FUNCTI ON Exanpl eOp: : Recordl ni ti al Val ues, oCndSet, oTargets, idProp

Loop through the target objects and record the value of the
STYLE property.
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEG N
Create a conmand object to store the val ues.
oCnd = OBJ_NEW' I DLi t Conmand', $
TARGET_| DENTI FI ER = oTargets[i]->CetFullldentifier())
Get the value of the STYLE property
oTargets[i]->CGetProperty, STYLE = styl el ndex
; Add the value to the command obj ect
voi d = oOnd->Addl ten{' OLD_STYLE', styl el ndex)
Add the command obj ect to the conmmand set
oCmdSet - >Add, oCmd
ENDFOR

RETURN, 1

END

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 167

Discussion

The ExampleOp operation Recordinitial Values method simply loops through the

supplied list of target objects, creating a new IDLitCommand object for each. We set
the TARGET_IDENTIFIER property for each command object. Next, we retrieve the
value of the STY LE property for each target object and add it to the command object
as an Item. Finally, we add each command object to the supplied IDLitCommandSet

object.
Creating a RecordFinalValues Method

The operation class RecordFinal Values method is responsible for recording the
appropriate “ after” values from the specified objectsin the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordFinalValues Method

The following example code shows a simple RecordFinal Values method for the
Exanpl eQp operation. The new value of the STY LE property of each target object is
recorded in the appropriate IDLitCommand object retrieved from the command set.

FUNCTI ON Exanpl eQp: : Recor dFi nal Val ues, oCndSet, oTargets, idProp

Loop through the target objects and record the value of the
STYLE property.
FOR i = 0, N ELEVMENTS(oTargets)-1 DO BEG N
Retrei ve the appropriate command object fromthe
comrand set.
oCnd = oCndSet->Cet (POSITION = i)
Get the val ue of the STYLE property
oTargets[i]->CetProperty, STYLE = styl el ndex
; Add the value to the command obj ect
voi d = oOnd- >Addl t en{' NEW STYLE', styl el ndex)
; Add the command object to the conmand set
oCmdSet - >Add, oCnd
ENDFOR

RETURN, 1
END

Discussion

The ExampleOp operation RecordFinal Values method simply loops through the
supplied list of target objects, recording the new value for the STY LE property in the
IDLitCommand object associated with each target.

iTool Developer’s Guide Creating a New Generalized Operation

168 Chapter 7: Creating an Operation

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class' GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the operation class or one of its
superclasses.

See " IDLitOperation::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method
The following example code shows a very simple GetProperty method for the
Exanpl eOp operation:
PRO Exanpl eOp: : Get Property, _REF_EXTRA = _extra

; get superclass properties
IF (N_ELEMENTS(_extra) GI 0) THEN $
sel f->IDLitOperation:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows propertiesto be retrieved from the Exanpl eQp class’ superclasses
without knowing the names of the properties.

In this example, there are no properties specific to the Exanpl eQp object, so we
simply call the superclass' GetProperty method, passing in al of the keywords stored
inthe ext r a structure.

Creating a SetProperty Method

The operation class SetProperty method stores property values in the operation
object’sinstance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
data or by calling another class’ SetProperty method.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 169

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the operation class or one of its
superclasses.

See“IDLitOperation::SetProperty” in the IDL Reference Guide manual for additional
details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
Exanpl eOp operation:

PRO Exanpl eOp: : Set Property, _REF_EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
sel f->I DLitQperation::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
allows properties to be set on the Exanpl eOp class' superclasses without knowing
the names of the properties.

In this example, there are no properties specific to the Exanpl eOp object, so we
simply use the N_ELEMENTS function to check whether the _ext r a structure
contains any elements. If it does, we call the superclass’ SetProperty method, passing
in all of the keywords stored in the _ext r a structure.

Creating an UndoOperation Method

The operation class UndoOperation method is called when the user undoes the
operation by selecting “Undo” from a menu or toolbar.

Example UndoOperation Method

The following example code shows a very simple UndoOperation method for the
Exanpl eQp operation:

FUNCTI ON Exanpl eQp: : UndoQper ati on, oCommandSet

Retrieve the |DLitComand objects stored in the
; conmand set object.

iTool Developer’s Guide Creating a New Generalized Operation

170 Chapter 7: Creating an Operation

oCnds = oCommandSet - >Get (/ ALL, COUNT = nQbj s)

; Get a reference to the i Tool object.
oTool = sel f->GetTool ()

Loop through the |DLit Conmand objects and restore the
origi nal val ues.
FORi =0, nObjs-1 DO BEG N
oCnds[i] ->Get Property, TARGET_I| DENTI FI ER = i dTar get
oTarget = oTool ->Get Byl dentifier(idTarget)
; CGet the old val ue
IF (oQOmds[i]->Cetlten(' OLD STYLE , stylelndex) EQ 1) THEN $
oTar get - >Set Property, STYLE = styl el ndex
ENDFOR

END
Discussion
The UndoOperation method does the following things:

1. Retrievesan array of IDLitCommand objects from the supplied
IDLitCommandSet object

Gets areference to theiTool object.

For each command object, retrieve the identifier string for the target object.
Use the identifier string to retrieve areference to the target object itself.

4. Retrievethe OLD_STYLE item from the command object and use its value to
set the STY LE property on the target object.

Note
The UndoOperation method could also have been implemented without the use of

the values stored in the command set object simply by decrementing the value of
the STYLE property for each target.

Creating a RedoOperation Method

The operation class RedoOperation method is called when the user redoes the
operation by selecting “Redo” from a menu or toolbar.

Example RedoOperation Method

The following example code shows a very simple RedoOperation method for the
Exanpl eOp operation:
FUNCTI ON Exanpl eQp: : RedoQper ati on, oConmmandSet

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 171

Retrieve the IDLitComand objects stored in the
conmand set object.
oCnds = oConmandSet - >Get (/ ALL, COUNT = nQbj s)

Get a reference to the i Tool object.
oTool = self->GetTool ()

Loop through the IDLitComuand objects and restore the
new val ues.
FORi = 0, n(bjs-1 DO BEG N
oCmds[i]->Cet Property, TARCET_I DENTI FI ER = i dTar get
oTarget = oTool ->Get Byl dentifier(idTarget)
;. CGet the new val ue
IF (oCOmds[i]->CGetlten(' NEWSTYLE , stylelndex) EQ 1) THEN $
oTar get - >Set Property, STYLE = styl el ndex
ENDFOR
END

Discussion
The RedoOperation method does the following things:

1. Retrievesan array of IDLitCommand objects from the supplied
IDLitCommandSet abject

2. Getsareference to theiTool object.

3. For each command object, retrieve the identifier string for the target object.
Use the identifier string to retrieve areference to the target object itself.

4. Retrievethe NEW_STYLE Item from the command object and useitsvalueto
set the STY LE property on the target object.

Note
The RedoOperation method could also have been implemented without the use of
the values stored in the command set object simply by incrementing the value of the
STYLE property for each target.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ _NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Cbj ect Cl ass__def i ne (where ObjectClass is the name of the object),

iTool Developer’s Guide Creating a New Generalized Operation

172 Chapter 7: Creating an Operation

which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 23 of the Building IDL Applications manual.

Subclassing from the IDLitOperation Class

The IDLitOperation classisthe base classfor all iTool operations. In amost all cases,
new operations will be subclassed either from the IDLitOperation class or from a
classthat is asubclass of IDLitOperatoin.

Note
If your operation acts directly on data, rather than affecting the visual appearance of
objectsin theiTool, you may be able to subclass from IDLitDataContainer. See
“Creating aNew Data-Centric Operation” on page 145 for details.

See"IDLitOperation” in the IDL Reference Guide manual for details on the methods
and properties available to classes that subclass from IDLitOperation.

Example Class Structure Definition

The following isthe class structure definition for the Exanpl eOp operation class.
This procedure should be the last procedure in afile named
exanpl eop__define. pro.

PRO Exanpl eOp__Defi ne
struct = { ExanpleQp, INHERI TS | DLit Qperation}
END
Discussion

The purpose of the structure definition routine is to define anamed IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case, Exanpl eOp.

Like many iTool operations that act on data, Exanpl eQp is created as a subclass of
the IDLitOperation class. The ExampleOp Operation class does not include any
instance data of its own.

Note
This example isintended to demonstrate how simpleit can be to create a new
operation class definition. While the class definition for an operation class with
significant extrafunctionality will likely define additional structure fields, and may
inherit from other i Tool classes, the basic principles are the same.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 173

Operations and Macros

The concept of amacro was introduced to theiTool systemin IDL 6.1. Macros allow
iTool usersto record a series of actions for later playback. A related feature, the
history of aniTooal, lists all actions performed in agiven iTool, whether or not actions
are currently being recorded. For additional information on macros and history, see
Chapter 8, “Working with Macros’ in the iTool User’s Guide manual .

In many cases, operations you create will automatically be placed in the history (and
be available for recording) when a user invokes them. Specifically, if you create an
operation with an Execute or DoAction method that does not display a user interface,
you do not need to do anything special to ensure that your operation is recorded

properly.
If your operation displays a user interface, you must ensure that the
SHOW_EXECUTION_UI property of the operation is unhidden.
SHOW_EXECUTION_UI isaproperty of all operations, but it is hidden by default.
To unhide the property, insert the following line into the Init method of your
operation:

sel f->Set PropertyAttri bute, ' SHON EXECUTI ON_U ', HI DE=0

The execution user interface must be unhidden to allow user control of thedialogin a
macro item for the operation. The default value of the SHOW_EXECUTION_UI
property can be set to either O (False) or 1 (True); it is only important that the
property isvisible. When an operation is added to a macro, the
SHOW_EXECUTION_UI property for that macro item will be set to 0 (False),
regardless of the current setting of the property for the operation itself.

The user interface for your operation should only modify properties of the operation
itself. Changes to properties other than those of the operation that are made by the
operation’s user interface will not be recorded.

iTool Developer’s Guide Operations and Macros

174 Chapter 7: Creating an Operation

Registering an Operation

Before an operation can be performed by an iTool, the operation’s class definition
must be registered as being available to the iTool. Registering an operation with the
iTool links the class definition file that contains the actual IDL code that defines the
operation with asimple string that names the type. Code that performs an operationin
an iTool uses the name string to specify which operation should be performed.

Using IDLitTool::RegisterOperation

In most cases, you will register an operation with theiTool in theiTool’s class Init
method. Registration ensures that the operation is available to the iTool. (See
“Creating aNew iTool Class’ on page 85 for details on the iTool class Init method.)

To register an operation, call the IDLitTool::RegisterOperation method:
sel f - >Regi st er Operati on, OperationName, Operation_C ass_Name

where OperationName is the string you will use when referring to the operation, and
Operation_Class Nameis a string that specifies the name of the classfile that
contains the operation’s definition.

Note
ThefileOperati on_Cl ass_Nane__defi ne. pr o must exist somewherein IDL's
path for the visualization type to be successfully registered.

See“IDLitTool::RegisterOperation” in the IDL Reference Guide manual for details.
Specifying Useful Properties

You can set any property of the IDLitOperation and I DLitComponent classes when

registering an operation. The following properties may be of particular interest:

EXPENSIVE_OPERATION

A boolean value that indicates whether the operation is expensive. Expensive
operations are those that require significant memory or processing time to execute.
Individual operations should use the value of this property to determine whether the
results of the operation should be cached to avoid re-execution when undoing or
redoing.

Registering an Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 175

ICON

A string value giving the name of anicon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “lcon Bitmaps’ on page 43 for details on where bitmap icon files are
located.

IDENTIFIER

A string that will be used as the identifier of the object. Identifier strings specify
where within an iTool’s object hierarchy an object islocated; this, in turn, may affect
whether and where the object isrevealed in theiTool’s graphical user interface. For
example, to display a menu item for an operation named' MyQper ati on' inthe
iTool Operations menu, you would specify the identifier string

' Oper at i ons/ MyOper at i on' . See“iTool Object Identifiers’ in Chapter 2 of the
iTool Developer’s Guide manual for details about how identifiers are named.

If this property is not specified, then the value of the OperationName argument is
used as the identifier.

REVERSIBLE_OPERATION

A boolean value that indicates whether the operation isreversible. When an operation
isreversible, it can be undone by applying an operation rather than restoring a stored
value. Rotation by a specified angle is an example of an operation that is reversible,
since applying ancther rotation by the same angle in the opposite direction returns the
visualization to its original state. Individual operations should use the value of this
property to determine how the operation should be undone.

SHOW_EXECUTION_UI

A boolean value that indicates whether the operation should display a user interface
element such as a dialog when the operation is executed.

TYPES

A string or an array of strings indicating the types of data to which the operation can
be applied. iTools data types are described in Chapter 3, “ Data Management”. Set this
property to anull string (' ') to specify that the operation can be applied to all types

of data.

iTool Developer’s Guide Registering an Operation

176 Chapter 7: Creating an Operation

Unregistering an Operation

If you are creating anew iTool from an existing iTool class, you may want to remove
an operation registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers an operation you don’t want included in your iTool. Rather than recreating
theiTool classto remove the operation, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted
operation.

Unregister an operation by calling the IDLitTool::UnregisterOperation method in the
Init method of your iTool class:

sel f->Unregi sterOperation, identifier

where identifier isthe string value of the IDENTIFIER property specified when
registering the operation.

For example, suppose you are creating anew iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitTool Surface class. If you wanted your
new tool to behave just like the i Surface tool, with the exception that it would not
handl e the resample operation, you could include the following method call in your
iTool’s Init method:

sel f->Unregi sterOperation, 'Operations/Transfornl Resanpl e'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterOperation
method, you can inspect the class file that registers the operation (if the operationis
registered by a user-created class), or use the Findldentifiers method of the IDLitTool
object to generate alist of registered operations. (Standard iTool operations are pre-
registered within the iTool framework.)

If the operation is registered in a user-created class, you could inspect the class
definition file to find a call to the RegisterOperation method, which looks something
like this:

sel f->Regi sterOperation, 'Resanple', 'idlitopresanmple', $

| DENTI FI ER = ' Oper ati ons/ Tr ansf or m Resanpl e’

The value of the IDENTIFIER keyword to the RegisterOperation method
(" Oper ati ons/ Tr ansf or m Resanpl e') isthe string value of the operation’s
IDENTIFIER property.

Unregistering an Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 177

Alternatively, to generate alist of relative identifiersfor all operations registered with
the current tool, use the following statements:
voi d = | TGETCURRENT(TOOL=0Tool)
opslist = oTool ->Fi ndl dentifiers(/ OPERATI ONS)
FORi = 0, N ELEMENTS(opslist)-1 DO PRINT, $
STRM D(opslist[i], STRPOS(opslist[i], '/ OPERATIONS , $
/| REVERSE_SEARCH) +1)

Note that the string in the call to STRPOS must be in upper case.

To refine the search so that only operationsin the “ Transform” folder are found,
specify a search term as the argument to the Findl dentifiers method:

voi d = | TGETCURRENT(TOOL=0Tool)
opslist = oTool ->Findldentifiers('*transfornt', /OPERATI ONS)
FOR i = 0, N_ELEMENTS(opslist)-1 DO PRINT, $
STRM D(opslist[i], STRPOS(opslist[i], '/OPERATIONS , $
| REVERSE_SEARCH) +1)

See“IDLitTool::Findldentifiers’ in the IDL Reference Guide manual for details.

iTool Developer’s Guide Unregistering an Operation

178

Chapter 7: Creating an Operation

Example: Data Resample Operation

This example creates a data operation to resample datain a dataset using the IDL
CONGRID function.

The code for this example operation isincluded in thefile

exanpl el_opresanpl e__define. prointheexanpl es/ doc/itool s
subdirectory of the IDL distribution. Enter

exanpl elt ool

at the IDL prompt to create an instance of an iTool that registers this operation, or

.conpi |l e exanpl el _opresanpl e

to openthe. pro fileinthe IDL editor.

Class Definition File

The class definition for exanpl el _opr esanpl e consists of an Init method, an
Execute method, GetProperty and SetProperty methods, and a class structure
definition routine. Aswith all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pr o appended).

Init Method

FUNCTI ON exanpl el_opresanple::Init, _REF_EXTRA = _extra

IF (~ sel f->IDLitDataQperation::Init(NAVE=' Resanple', $

TYPES=[' | DLVECTOR , ' | DLARRAY2D ,' | DLARRAY3D], $

DESCRI PTI ON=" Resanpl i ng", _EXTRA = _extra)) THEN $
RETURN, O

Default values for resanpling factors.

self. x =2
self. y =2
self. z =2

Regi ster properties
sel f->Regi sterProperty, 'X , /FLOAT, $
DESCRI PTI ON=' X resanpling factor.'

Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 179

sel f->Regi sterProperty, 'Y, /FLQOAT, $
DESCRI PTI ON=' Y resanpling factor.'

sel f->Regi sterProperty, 'Z, /FLOAT, $
DESCRI PTI ON=' Z resanpling factor.'

sel f->Regi sterProperty, 'METHOD , $
ENUMLI ST=[' Near est nei ghbor', 'Linear', 'Cubic'], $
NAVE=' | nt er pol ati on method', $
DESCRI PTI ON=' I nt er pol ati on net hod.'

I F (N_ELEMENTS(_extra) GI 0) THEN $
sel f ->exanpl el_opresanpl e:: Set Property, _EXTRA = _extra

Unhi de the SHOW EXECUTI ON_Ul property.
sel f->Set PropertyAttribute, 'SHOWN EXECUTI ON_U ', HI DE=0

RETURN, 1

END
Discussion

Thefirst item in our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name examplel opresample. The
_REF_EXTRA keyword inheritance mechanism allows any keywords specified in a
call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitDataOperation class; this provides us with all of the standard iTool data
operation functionality automatically. We specify threeiTool datatypes on which our
operation will work: “IDLVECTOR”, “IDLARRAY 2D”, and “IDLARRAY 3D". Any
“extra’ keywords specified in the call to our Init method are passed to the
IDLitDataOperation::Init method via the keyword inheritance mechanism. If the call
to the superclass Init method fails, we return immediately with avalue of O.

Next we store the default values for the three resampling factors (one each for the X,
Y, and Z dimensions) in the object instance datafields_x, _y, and _z. We register
each of these values as a property of the operation. We also register the METHOD
property, assigning to it an enumerated list with three strings describing three
different interpolation methods (“Nearest Neighbor”, “Linear”, and “ Cubic”).

If any “extra’ keywordswere specified in the call to our Init method, we pass them to
the SetProperty method our examplel_opresample object.

Finally, we return the value 1 to indicate successful initialization.

iTool Developer’s Guide Example: Data Resample Operation

180 Chapter 7: Creating an Operation

Execute Method

FUNCTI ON exanpl el_opresanpl e: : Execute, data
di ms = Sl ZE(data, /DI MENSI ONS)

CASE N_ELEMENTS(di ns) OF
1: newdims = dins*ABS([sel f._x]) > [1]
2: newdins = dims*ABS([sel f._x, self._y]) >[1, 1]
3: newdins = dins*ABS([sel f._x, self._y, self._z]) >[1, 1, 1]
ELSE: RETURN, O

ENDCASE

; No change in size.
| F (ARRAY_EQUAL(newdi ns, dims)) THEN RETURN, 1

interp = 0 &cubic =0
CASE (sel f._nethod) OF

0: ; do nothing

1: interp =1

2: cubic =1
ENDCASE

CASE N_ELEMENTS(di ns) OF
1. data = CONGRI D(data, newdins[0], $
I NTERP = interp, CUBIC = cubic)
2: data = CONGRI D(data, newdi ns[0], newdins[1], $
I NTERP = interp, CUBIC = cubic)
CONGRI D al ways uses linear interp with 3D
3: data = CONGRI D(data, newdi ns[0], newdi ns[1], newdins[2])
ENDCASE

RETURN, 1

END
Discussion

The Execute method does the work of our operation. Since examplel opresampleis
based on the IDLitDataOperation class, when the operation is requested by a user the
Execute method is automatically called with each of the currently selected data
objects as the data argument.

First, we use the SIZE function to determine the number of dimensions of the input
dataitem. We use a CASE statement to create a new array (newdi ns) that stores the
number of elements of each dimension multiplied by the scale factor for each
dimension. The number of elementsin each dimension cannot be |ess than one.

Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 181

Next we use the ARRAY _EQUAL function to compare the number of elements of
each dimension of the input data with the number of elements of each dimension of
our newdi ns array. If these numbers are equal, no resampling will take place, so we
stop processing and return 1 for success.

If our newdims array contains a different number of elements than the original input

data, some resampling will take place. We check the value of the METHOD property
(stored in the instance data field _method) to determine what type of resampling we

should perform.

Finally, we call the CONGRID function with the appropriate arguments and
keywords, depending on the dimensionality of the input data and the resampling
method specified. We then return 1 for success.

GetProperty Method

PRO exanpl el_opresanpl e: : Get Property, $
=x, $

y, $

z, $

METHOD = net hod, $

_REF_EXTRA = _extra

X
Y
Z

My properties.
| F ARG PRESENT(x) THEN $

x = self. x

| F ARG PRESENT(y) THEN $
y = self._y

| F ARG PRESENT(z) THEN $
z = self. _z

| F ARG_PRESENT(et hod) THEN $
nmet hod = sel f._net hod

Super cl ass properti es.
IF (N_ELEMENTS(_extra) gt 0) THEN $
sel f->IDLitDataQperation:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these propertiesis specified in the call to the GetProperty
method, its value is retrieved from the appropriate instance data field. Any other

iTool Developer’s Guide Example: Data Resample Operation

182 Chapter 7: Creating an Operation

properties included in the method call are passed to the superclass’ GetProperty
method.

SetProperty Method

PRO exanpl el_opresanpl e: : Set Property, $
X=x $
Y=y, $
Z=2z $
METHOD = et hod, $

REF EXTRA = _extra

My properties.
| F N_ELEMENTS(x) THEN $
IF (x NE 0) THEN self._x

1
x

IF N_ELEMENTS(y) THEN $
IF (y NEO) THEN self._y =y

| F N_ELEMENTS(z) THEN $
IF (z NE O) THEN self._z

1
N

| F N_ELEMENTS(et hod) THEN $
sel f. nethod = net hod

Super cl ass properti es.
I F (N_ELEMENTS(_extra) gt 0) THEN $
sel f->1DLitDataCperation:: SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these propertiesis specified in the call to the SetProperty
method, its valueis stored in the appropriate instance data field. Any other properties
included in the method call are passed to the superclass' SetProperty method.

Class Definition
PRO exanpl el_opresanpl e__define
struc = {exanpl el_opresanple, $
i nherits |IDLitDataOperation, $
_x: 0d, $

_y: 0d, $
_z: 0d, $

Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 183
_method: Ob $
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name exanpl el_opr esanpl e, specifying that the structure inherits from the
IDLitDataOperation class. The structure has three instance data fields named _x, _y,
and _z, which contain double-precision floating point values, and a single instance
datafield named _net hod which contains a byte value.

iTool Developer’s Guide Example: Data Resample Operation

184 Chapter 7: Creating an Operation

Example: Data Resample Operation iTool Developer’s Guide

Chapter 8:

Creating a Manipulator

This chapter describes creating a custom manipulator. See the following topics for details.

Overview of Manipulators. 186
The Manipulator Creation Process 189
Predefined iTool Manipulators
Manipulators and the Undo/Redo System . 194
Using Manipulator Public Instance Data . . 196

iTool Developer’s Guide

Creating aNew Manipulator 198
Registering aManipulator 214
Unregistering aManipulator 216
Example: Color Table Manipulator 217

185

186 Chapter 8: Creating a Manipulator

Overview of Manipulators

A manipulator isaniTool component object class that defines away the user can
interact with visualizations in the i Tool window using the mouse or keyboard. Some
examples of iTool manipulators are:

» Thetrand ation/scaling manipulator, which allows the user to interactively
move visualizations around in an iTools window and change their size

* Therotation manipulator, which alows the user to change the orientation of
visualizations in two or three dimensions

¢ Theannotation manipulators, which allow the user to insert text, line, polygon,
and other annotations

The majority of manipulators are associated with an operation that modifies the data
of the selected visualization in some manner. While a manipulator need not specify
an associated operation, thisis required to support undo/redo functionality as
described in “Manipulators and the Undo/Redo System” on page 194.

A number of standard manipulators and manipulator containers are predefined and
included in the IDL iTools package as described in “ Predefined iTool Manipulators’
on page 190. If none of the predefined manipulators suit your needs, you can create
your own manipulator by subclassing either from the base IDLitManipulator class, on
which all of the predefined manipulators are based, or from one of the predefined
manipulators.

Manipulators and Manipulator Containers

A manipulator is activated when the user clicks on the manipulator’s associated
toolbar icon. A manipulator typically modifies attributes of atarget object (e.g. scales
an image), or records a sequence of values (e.g. creates an annotation). For a given
iTool, there is always a single active manipulator.

Manipulator containers (subclassed from IDLitManipulatorContainer) are used to
create hierarchies of manipulators, anong which the current or active manipulator
can be defined. The child manipulator (subclassed from IDLitManipulator) can be
automatically changed based on the selection and what portion of aselection visual is
hit during a mouse-down operation. See the AUTO_SWITCH property of
“IDLitManipulatorContainer” in the IDL Reference Guide manual for details. See the
following section for information on selection visuals.

Overview of Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 187

Note
A manipulator need not always be interactively selected. The
IDLitTool::ActivateM anipulator method can be used to programmeatically start a
manipulator. This can be especially useful when you need to reactivate atool’s
default manipulator because none of the conditions required by a custom
manipulator have been met.

An IDLitManipulatorManager object is a specialized manipulator container that acts
astheroot of amanipulator hierarchy. The manipulator manager is associated with an
IDLitWindow object viathe window's SetManipulatorM anager method. The
manipulator manager passes information about the manipulator to observers such as
toolbars or menu items. See“IDLitManipulatorManager” in the IDL Reference Guide
manual for details.

Manipulator Visuals

An IDLitManipulatorVisual object isaso known as a selection visual. A selection
visual appears when a manipulator is activated. Advanced manipulators can be
configured to interact with a selection visual, defining how a user can modify a
visualization. For example, Figure 8-1 displays objects based upon an
IDLitManipVisRotate object:

¢ IDLitManipVisRotate2D (used when the target is 2-D)

« IDLitManipVisRotateAxis (one for the x, y, and z axis, and used when the
target is 3-D)

The appearance of the selection visual depends upon whether the datais 2-D (left) or
3-D (right). In the case of 2-D data, the selection visuals indicate an area within the
visualization that will allow rotation when you left-click and drag the mouse cursor.
In the case of 3-D data, the selection visuals allow rotation around the x-, y-, or z-
axis, depending on which portion of the selection visua is selected.

iTool Developer’s Guide Overview of Manipulators

188 Chapter 8: Creating a Manipulator

Selection Visuals

Figure 8-1: Rotate Manipulator Selection Visuals

When you initialize a manipulator, you can define the type of selection visua that
appears by setting the VISUAL_TY PE keyword to the Init method. If you create a
custom IDLitManipulatorVisual object, then the VISUAL_TY PE property values of
the IDLitManipulator and IDLitManipulatorVisual objects are the same. Unless
otherwise specified, a custom manipulator will retain the selection visual of the last
active manipulator.

Note
Creation of IDLitManipulatorVisual objectsis beyond the scope of this chapter.
However, you may examinethe | DLi t Mani pVi s* classesin the
l'i b\it ool s\ conponent s subdirectory of the IDL installation directory as
guides if you choose to create a selection visual.

Overview of Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 189

The Manipulator Creation Process

To create a new iTool manipulator, you will do the following:

e Choose an iTool manipulator class on which your new manipulator will be
based. In almost al cases, you will base your new manipulator on the
IDLitManipulator class, which provides methodsfor detecting selections made
by the user, mouse button-press events, mouse motion, and other low-level
manipulator functions.

« Define the properties of the manipulator.

e |If the manipulator is to support undo/redo functionality, it must have an
associated operation. You can create a custom operation, or if the manipulator
modifies a property of the target object, you can use the built-in
SET_PROPERTY operation.

« Define methods that specify what should happen when the manipulator is
activated. Thisincludes implementing execution logic within methods that are
invoked in response to mouse and keyboard events.

« Define what cursor appears when the manipulator is activated. You can use a
custom cursor or a pre-existing cursor.

» Create an icon for the manipulator that will appear on the toolbar. The
manipulator will be activated when the user selects the toolbar item.

* Override methods used to get or set properties, react to user interaction with
the visualization, and clean up, as necessary.

This chapter describes the process of creating a new manipulator based on the
IDLitManipulator class. If you have a number of manipulators that are designed to
work together, you will want to create a manipulator container based on the
IDLitManipulatorContainer class. More advanced manipulators can a so be designed
to work in conjunction with a custom selection visual, based on the
IDLitManipulatorVisual class. See “Manipulator Visuals’ on page 187 for
introductory information regarding selection visuals.

iTool Developer’s Guide The Manipulator Creation Process

190 Chapter 8: Creating a Manipulator

Predefined iTool Manipulators

TheiTool system distributed with IDL includes a number of predefined manipulators.
You can include these manipulatorsin an iTool directly by registering the class with

your iTool (as described in “ Registering a Manipulator” on page 214). You can also

create a new manipulator class based on one of the predefined classes.

Predefined manipulators include those which are containers (subclassing from
IDLitManipulatorContainer), and those which are visualization manipulators
(subclassing from I DLitManipulator). The manipul ators themselves allow the user to
select and interact with the visualization through mouse movements and keyboard
events.

General Manipulators

The following manipulators are available to any tool that subclasses from
IDLitToolbase unless otherwise noted.

IDLitManipArrow

The arrow manipulator (IDLitManipArrow) is used to select a visualization object in
the iTool window. It is also a container for the following manipulators:

e |IDLitManipTranslate — repositions the visualization
e |DLitManipScale — resizes the visualization
« IDLitManipLine — moves the endpoint vertices of a selected line segment

* IDLitManipView — translates and scales views, enabling functionality based
on cursor position within the iTool window

e IDLitManiplmagePlane — moves an image plane in an iVolume tool window
or inawindow of atool that subclasses from IDLitTool Volume.

IDLitManipAnnotation

The annotation manipulator (IDLitManipAnnotation) is used to add text, lines, or
shapes to an iTool window. The following annotation manipulators subclass from
IDLitManipAnnotation:

* |DLitAnnotateText — adds text to the iTool window
* |DLitAnnotateLine — adds aline to the iTool window

« IDLitAnnotateRectangle — adds a rectangle to the i Tool window

Predefined iTool Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 191

» IDLitAnnotateOval — adds an oval to the iTool window
¢ |DLitAnnotatePolygon — adds a polygon to the iTool window
¢ |DLitAnnotateFreehand — adds a freehand shape to the iTool window

IDLitManipLine

The profile line manipulator creates a profile plot for aline drawn on a surface or
image.

IDLitManipRotate

The rotation manipulator rotates a visualization in the iTool window. It is a container
for the following manipulators:

» IDLitManipRotate3D — repositions a visualization in three dimensions when
the visualization is three-dimensional, or in two dimensions when the
visualization is two-dimensional

¢ |IDLitManipRotateX — rotates a visualization about the x-axis
* |IDLitManipRotateY — rotates a visualization about the y-axis
» |IDLitManipRotateZ — rotates a visualization about the z-axis

IDLitManipViewPan

The view pan manipulator, initiated by clicking on the hand tool, pansthe view in the
iTool window. The hand tool is available only when the zoom level of the view is
greater than 100 percent or when the window has been resized and has scroll bars.

IDLitManipViewZoom

The view zoom manipulator changes the scaling of the view in the iTool window.
Thisis not to be confused with IDLitManipScale, which resizes the visualization.

Image Manipulators

The following manipulators are available in the ilmage i Tool and any tools that
subclass from IDLitToolImage.

IDLitManipCropBox

The crop box manipulator defines a crop region for an image.

iTool Developer’s Guide Predefined iTool Manipulators

192 Chapter 8: Creating a Manipulator

IDLitManipROIFree

The freehand ROl manipulator draws a freehand ROI on the image.
IDLitManipROIOval

The oval ROI manipulator draws an oval ROI on the image.
IDLitManipROIPoly

The polygon ROI manipulator draws a polygonal ROI on the image.
IDLitManipROIRect

The rectangle ROl manipulator draws a rectangular ROl on the image.
Plot and Contour Manipulators

The following manipulators are available in the iPlot and i Contour i Tools, and any
tools that subclass from IDLitTool Plot or IDLitTool Contour.

IDLitManipRange

The range manipulator is available with a plot or contour visualization. The
IDLitManipRange manipulator is a container for the following manipulators:

« |DLitManipRangeBox — changes the displayed range of the plot data to that
which existsin the range box

« IDLitManipRangePan — scrolls the displayed data range using arrows
displayed along the axes

« IDLitManipRangeZoom — zooms in or out on the y-data range, x-data range,
or both x- and y-data ranges simultaneously through plus and minus symbols
positioned along the plot axes and at the origin

Surface Manipulators

The following manipulator is available in the iSurface iTool and any tools that
subclass from IDLitTool Surface.

IDLitManipSurfContour

The surface contour manipulator draws a contour line at the indicated elevation on a
surface.

Predefined iTool Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 193

Note
This manipulator is not to be confused with the Operations — Contour selection,
which draws a specified number of contour levels, projected onto the XY plane at
Z=0.

Volume Manipulators

The following manipulator is available in the iVolume i Tool and any tools that
subclass from IDLitTool Volume.

IDLitManipIlmagePlane

When an image plane has been created using the Oper ations —» Volume — Image
Plane selection, clicking on the arrow manipulator tool initiates the image plane
manipulator. This manipulator repositions the image plane.

iTool Developer’s Guide Predefined iTool Manipulators

194 Chapter 8: Creating a Manipulator

Manipulators and the Undo/Redo System

A manipulator can be configured to support undo/redo functionality when it invokes
an associated operation that records the actions performed by the manipulator in the
undo/redo buffer. This operation can be a custom operation or an existing operation.
(See Chapter 7, “Creating an Operation” for details on operation creation.) In the
manipulator class Init method, specify a string value for the
OPERATION_IDENTIFIER keyword to indicate the name of the operation
associated with the manipulator.

Note
If the manipul ator modifies a property exposed on the target object, you can specify
the built-in SET_PROPERTY operation to manage undo-redo information. Set
OPERATI ON_I DENTI FI ER=' SET_PROPERTY' asshownin “Creating a
Manipulator Init Method” on page 199. This built-in operation automates undo/redo
transactions.

When using the SET_PROPERTY operation, you must also set the
PARAMETER_IDENTIFIER keyword during initialization. Set this keyword to the
property identifier of the property being manipulated. To determine the identifiers of
avisualization's properties, you can retrieve the object’s identifier and retrieve the
names of all registered properties as described in “ Retrieving Property Information”
in Appendix A. The following example uses the itPropertyReport procedure to print
all the registered property names and identifiers supported by the object to the Output
Log window. The following sample code shows how to retrieve the properties
associated with an image.

;. CGet the tool reference.
i dt ool =1 TGETCURRENT(TOOL = oTool)

Retrieve the paraneter identifier for the the inmge.
Print the identifier, name and type of each associ ated
; registered property using the |tPropertyReport procedure.
vl mage = oTool ->Findldentifiers('*imge*', /VISUALI ZATI ON)
it PropertyReport, otool, vlnmage

Note
See “Retrieving Property Information” in Appendix A for more information about
property identifiers and names.

Manipulators and the Undo/Redo System iTool Developer’s Guide

Chapter 8: Creating a Manipulator 195

Capturing Information for the Undo/Redo System

Theinitial and final values of the manipulated item must be recorded so that the
operation can be undone and redone. Two manipulator object methods allow you to
specify when values are initially recorded and committed. The RecordUndoValues
and CommitUndoValues methods work in conjunction with the operation defined
during manipulator initialization by the OPERATION_IDENTIFIER keyword. The
RecordUndoValues and CommitUndoValues methods are inherited by classes that
subclass from IDLitManipulator.

The RecordUndoValues Method

The RecordUndoValues method records the initial values of the item being
manipulated. This method is typically called in the OnMouseDown or OnKeyboard
method of an interactive manipulator. When called, the manipulator retrieves the
associated operation and calls the operation’s Recordl nitial Values method. See
“Creating a RecordInitial Values Method” on page 166 for more information on this
method.

If your manipulator uses the built-in SET_PROPERTY operation, the initial value of
the property specified in the PARAMETER_IDENTIFIER is recorded and
automatically transacted when you call the RecordUndoValues method. See
“Implementing an OnMouseDown Method” on page 204 for a short example.

The CommitUndoValues Method

The CommitUndoValues method records final values resulting from the manipulator
action. When a transaction is completed, call the CommitUndoValues method to
placeinitial and final valuesinto the undo/redo buffer. This method istypically called
in the OnM ouseUp method or OnKeyboard method of an interactive manipul ator.
When called, the manipulator retrieves the associated operation and calls the
operation’s RecordFina Values method. See “ Creating a RecordFinal Values M ethod”
on page 167 for more information on this method.

If your manipulator uses the built-in SET_PROPERTY operation, the final value of
the property specified in the PARAMETER_IDENTIFIER isrecorded and
automatically transacted when you call the CommitUndoValues method. See
“Implementing an OnMouseUp Method” on page 206 for a short example.

iTool Developer’s Guide Manipulators and the Undo/Redo System

196 Chapter 8: Creating a Manipulator

Using Manipulator Public Instance Data

The IDLitManipulator class automatically manages sel ection state between mouse-
down and mouse-up interactions. Three public instance fields are exposed, providing
information about the mouse button state (But t onPr ess), the number of selected
items (nSel ecti onLi st), and an array of the currently selected visualizations
(pSel ecti onLi st).

Note
These fields are set by the OnM ouseDown method of IDLitManipulator, which
would be called by the OnMouseDown method of the subclass. These fields are
therefore available after a mouse down event in the iTool window.

Using the ButtonPress Field

The But t onPr ess field holds the state of mouse buttons when a manipulator has
been activated. For example, suppose your manipulator requires the user to hold
down a mouse button while moving the mouse cursor to affect some aspect of the
visualization. You could use apointer, set in the mouse down event and not reset until
the mouse up event, to indicate the user is holding down the mouse button. However,
amore efficient way isto use the built-in But t onPr ess field to access the same
information. The But t onPr ess value will be one of the following:

¢ 0=Nomouse button is pressed

¢ 1=Theleft mouse button is pressed

e 2 =The middle mouse button is pressed
e 3 =Theright mouse button is pressed

To determine if the user is holding down a mouse button, query the But t onPr ess
field in the OnMouseM otion method. Prior to manipulating a visuaization, a
statement such as the following would assure a mouse button was pressed:

; Activate if nouse button is held down.
| F self.ButtonPress NE 0 THEN BEG N

You could modify this statement to determine which mouse button is pressed or
access the field in one of the other mouse transaction methods. See “ Creating Mouse
Event Methods” on page 204 for more information about the OnMouseDown,
OnMouseMotion and OnMouseUp methods.

Using Manipulator Public Instance Data iTool Developer’s Guide

Chapter 8: Creating a Manipulator 197

Using the nSelectionList Field

ThenSel ect i onLi st field contains the number of currently selected itemsin the
window associated with the current manipulator. This corresponds to the number of
visualizations contained within the pSel ect i onLi st pointer, described in the
following section. If no visualizations have been selected, thenSel ect i onLi st
value equals 0 and the pSel ect i onLi st will contain an undefined IDL variable.
ThenSel ecti onLi st can be used to ensure the user has made a selection. For
example, in an OnMouseDown method, you may use a statement similar to the
following to ensure a selection has been made:

If nothing selected we are done.
IF (self.nSelectionList EQ0) THEN $
RETURN

ThenSel ecti onLi st field value can also be used to loop through the collection of
selected visualizations as shown in the following section.

Using the pSelectionList Pointer Field

ThepSel ecti onLi st field isapointer to an array of visualizations currently
selected in the window. Usethe nSel ect i onLi st valueto cycle through this array.
If amanipulator only acts upon visualizations of acertain type you can verify thetype
of each selected item in pSel ecti onLi st before attempting to modify the
visualization. ThenSel ect i onLi st and pSel ecti onLi st public instance data
fields are available from any manipulator object’s predefined or custom methods.

Loop through all selected visualizations.
FOR i =0, self.nSelectionList-1 DO BEG N
oVis = (*self.pSel ectionList)[i]

Verify type of visualization or manipulate it.

ENDFOR

Note

ThepSel ecti onLi st fieldisapointer. You must use IDL pointer syntax to access
itemsin thefield.

See “Example: Color Table Manipulator” on page 217 for a complete example that
uses these public instance data fields.

iTool Developer’s Guide Using Manipulator Public Instance Data

198

Chapter 8: Creating a Manipulator

Creating a New Manipulator

The manipulator class definition file will have the following components:

An Init method — this method initializes a manipulator object. See“ Creating a
Manipulator Init Method” on page 199.

A Cleanup method — this method destroys pointers or objects created by the
manipulator. See “ Creating a Cleanup Method” on page 203.

OnMouseDown, OnMouseUp, OnM ouseM otion methods — these methods
perform actions when the user activates the manipulator and interacts with the
visualization using the mouse. See “ Creating Mouse Event Methods” on

page 204.

An OnKeyboard method — this method links keyboard events to manipul ator
actions. See “Creating an OnKeyboard Method” on page 207.

A DoRegisterCursor method — this method lets you create and register a
custom manipulator cursor that appears when the manipulator is activated. See
“Creating a RegisterCursor Method” on page 209.

GetProperty or SetProperty methods — these methods let you retrieve or
configure properties of the manipulator or its superclasses. See “ Creating
GetProperty or SetProperty Methods’ on page 211.

Within appropriate components, invoke the manipulator’s RecordUndoValues
and CommitUndoVal ues methods — these methods call associated operation
methods to support undo/redo system transactions. See “Manipulators and the
Undo/Redo System” on page 194.

Note
As the RecordUndoValues and CommitUndoValues methods help automate
the transaction process, you would typically not need to override the default
superclass methods.

Other methods specific to the manipulator.

A Class Structure Definition — this creates an instance of the manipulator
class and instantiates required instance data. See “ Creating the Manipul ator
Class Structure Definition” on page 212.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 199

Creating a Manipulator Init Method
The manipulator class Init method handles any initialization required by the
manipulator object, and should do the following:
¢ Define the Init function method
e Cdl the Init methods of any superclasses
¢ Register any manipulator properties and set property attributes as necessary
e Perform other initialization steps as necessary

¢ Returnavalueof 1if theinitialization steps are successful, or O otherwise
The Manipulator Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool manipulators are invoked by the user’s interactive choice of atoolbar
item, they generally do not accept any keywords of their own.

The function signature of an Init method for a manipulator generally looks something
likethis:

FUNCTI ON MyMani pul ator::Init, _REF_EXTRA = _extra
where MyManipulator isthe name of your manipulator class.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

iTool Developer’s Guide Creating a New Manipulator

200 Chapter 8: Creating a Manipulator

Superclass Initialization

The manipulator class Init method should call the Init method of any required
superclass. For example, if your manipulator classis based on an existing
manipulator, you would call that manipulator’s Init method:

success = sel f->SoneMani pul atord ass::Init(_EXTRA = _extra)

where SomeManipulator Classisthe class definition file for the manipulator on which
your new manipulator is based. The variable success containsal if the
initialization was successful.

Note
Your manipulator class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than ssimply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method. If the returned value is 0
(indicating failure), the current Init method also immediately returns with avalue
of O

IF (self->SonmeManipul atordass::Init(_EXTRA = _extra) EQQ) THEN $
RETURN, O

This convention is used in all manipulator classes included with IDL. RS| strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the manipulator class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitManipulator class, the IDLitIMessaging class, and
the IDLitComponent class are available to any manipulator class. See
“IDLitManipulator Properties’, “IDLitIMessaging Properties’, and
“|IDLitComponent Properties’ in the IDL Reference Guide manual.

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 201

Standard Base Class

While you can create your new manipulator class from any existing manipul ator
class, the manipulator classes you create will usually be subclassed directly from the
base class, IDLitManipulator:

IF (self->IDLitManipulator::Init(_EXTRA = _extra) EQO0) $
THEN RETURN, O

The IDLitManipulator class provides the baseiTool functionality used in the
manipulator classes created by RSI. See “ Subclassing From the IDLitManipul ator
Class’ on page 212 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other manipulator classes that
subclass from your manipulator class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Example Init Method

The following example code shows a very simple Init method for a manipulator
named Exanpl eMani p. This function would be included (along with the class
structure definition routine and any other methods defined by the class) in afile
named exanpl emani p__defi ne. pro.

FUNCTI ON Exanpl eMani p::1nit, _REF _EXTRA = _extra

Initialize the superclass.

IF (self->IDLitMani pulator::Init(TYPES=['IDLIMAGE'], $
NAME=' Sanpl e Mani pul ator', TRANSI ENT_DEFAULT=1, $
OPERATI ON_I| DENTI FI ER=' SET_PROPERTY', $
PARAMETER | DENTI FI ER=' ALPHA CHANNEL' , $
_EXTRA = _extra) NE 1) THEN $

RETURN, O

Call a custom nethod that registers a cursor for this
mani pul at or.
sel f - >DoRegi st er Cur sor

I ndi cat e success.
RETURN, 1

END

iTool Developer’s Guide Creating a New Manipulator

202 Chapter 8: Creating a Manipulator

Discussion

The Exanpl eMani p classisbased on the IDLitManipulator class (discussed in
“Subclassing From the IDLitManipulator Class’ on page 212). Asaresult, all of the
standard features of an iTool manipulator are already present. We don’'t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eMani p Init method does the following things:

1. Cdlsthe Init method of the superclass, IDLitManipulator. Init method
keywords are specified as follows:

* TheTYPES keyword indicates the manipul ator works on data that has the
iTool datatype of | DLI MAGE. Allowable values for the TY PES keyword
are those types returned by the GetTypes method of IDLitVisualization.
See“IDLitVisualization::GetTypes’ in the IDL Reference Guide manual
for details.

Note
You can also examine the IDLitVis* classesin the
l'i b/itool s/framework subdirectory of the IDL installation directory.
The TY PE defined during the IDLitVisualization initialization defines the
visualization type. See " Predefined iTool Visualization Classes’ on page 109
for the visualization type of each visualization class.

* The NAME keyword identifies the manipulator. If the IDENTIFIER
keyword is not set, the manipulator’s identifier is created from the name.

e The TRANSIENT _DEFAULT keyword indicates that this manipulator is
transient, and that the default manipulator should be automatically started
when this manipulator finishes (on mouse up).

» If the manipulator is to support undo/redo functionality, you must specify
an operation associated with the manipulator as the
OPERATION_IDENTIFIER keyword value. If the manipulator modifiesa
property of an object, set the OPERATION_IDENTIFIER equal to
' SET_PROPERTY' , and the PROPERTY _IDENTIFIER keyword equal to
the parameter identifier of the property. This example manipulator changes
the opacity (ALPHA_CHANNEL) of an image. See “Manipulators and the
Undo/Redo System” on page 194 for more information.

e The_ EXTRA keyword inheritance mechanism passes through any
keywords provided when the Exanpl eMani p Init method is called.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 203

2. Calsamethod, DoRegisterCursor, that creates a cursor for this manipulator
using the IDLitManipulator::RegisterCursor method. See “ Creating a
RegisterCursor Method” on page 209 for more information. If you prefer, you
can use one of the predefined cursorsinstead of a custom cursor by setting the
DEFAULT_CURSOR property. See the IDLitManipulator property
“DEFAULT_CURSOR” inthe IDL Reference Guide for alist of predefined
cursors. When the mouse cursor is over avisualization of the appropriate type
(as defined by the TY PE property), the manipulator cursor is shown.

3. Returnstheinteger 1, indicating successful initialization.

The properties that support mouse and keyboard interaction are enabled by default.
See “IDLitManipulator Properties’ in the IDL Reference Guide manual for details.

Creating a Cleanup Method
The manipulator class Cleanup method handles any cleanup required by the
manipulator object, and should do the following:
» Destroy any pointers or objects created by the manipulator

e Call the superclass’ Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your manipulator classis based on the IDLitManipulator class, and does not
create any pointers or objects of its own, the Cleanup method is not strictly
required. It is always safest, however, to create a Cleanup method that calls the
superclass’ Cleanup method.

See“IDLitManipulator::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eMani p manipulator:

PRO Exanpl eMani p: : C eanup

; Clean up supercl ass.
sel f->] DLi t Mani pul at or: : C eanup

END

iTool Developer’s Guide Creating a New Manipulator

204 Chapter 8: Creating a Manipulator

Discussion

Since our manipulator’s instance data does not include any pointers or object
references, the Cleanup method simply calls the superclass Cleanup method.

Creating Mouse Event Methods

Manipul ators based on the IDLitManipulator class have the ability to respond to
mouse events generated by the user. The OnMouseDown, OnMouseM otion, and
OnMouseUp methods are invoked in response to mouse events in the iTool window.
The functionality of an interactive manipulator can be divided among these events.

Implementing an OnMouseDown Method

The manipulator class OnMouseDown method is called when a mouse down event
occurs on the target window. Calling the superclass

IDLitManipulator::OnM ouseDown method selects items at the mouse location and
fillsin the values of the But t onPr ess, nSel ecti onLi st and pSel ect i onLi st
instance data fields. See “Using Manipulator Public Instance Data” on page 196 for
more information on these fields. The x, y window coordinates of the cursor, which
button is depressed when the mouse button is clicked, and related information are
also provided through method parameters. Details on these method parameter values
are provided in “IDLitManipulator::OnMouseDown” in the IDL Reference Guide
manual.

The actual processing performed by the OnM ouseDown method depends entirely on
the manipulator. If the manipulator action does not rely on mouse movements, the
majority of your processing may occur in the OnMouseDown method. Regardless,
you can use this method to determine if user selections meet requirements, or to set
up initial values required for manipulator actions. If your manipulator calls a custom
operation or the SET_PROPERTY operation, and you want to enable undo/redo
support, call the RecordUndoValues method in the OnMouseDown method to record
theinitial values. See “Manipulators and the Undo/Redo System” on page 194 for
more information.

Example OnMouseDown Method

The following example code shows a simple OnMouseDown method for the
Exanpl eMani p manipulator. All this method doesis set class structure fields.

PRO Exanpl eMani p: : OnMouseDown, oWn, x, y, iButton, $
KeyMods, nd i cks

; Call our superclass.
sel f->1 DLi t Mani pul at or : : OnMouseDown, $

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 205

oWn, x, y, iButton, KeyMdds, nCicks, $

; Return if no visualization was sel ect ed.
IF (self.nSelectionList EQ0) THEN $
RETURN

; Access the first selected itemand nake sure it is an image.
ol mage = (*self.pSel ectionList)[0]
I F (OBJ_I SA(ol mage, ' I DLi t Vi sl mage')) THEN BEQ N
Set the olnage field of the class structure to be
; the retrieved IDLitVislnmge object.
sel f. ol mage = ol nage

; Record the current values for the target objects.
i Status = sel f->RecordUndoVal ues()

ENDI F

END

Discussion — When the ExampleManip manipulator is activated and the user clicks
in the iTool window, the OnMouseDown method calls the superclass (in order to
update the public instance fields) and makes sure a visualization was selected. If the
selected visualization is an image, store the image in the class structure field created
when the ExampleManip class structure is defined. Call the RecordUndoValues
method to support undo/redo functionality.

Implementing an OnMouseMotion Method

The manipulator class OnM ouseM otion method is called when a mouse motion event
occurs over the target window. This method provides access to the window object, the
X, y window coordinates of the cursor, and which modifier key (if any) is depressed
during mouse motion. The But t onPr ess instance data field can be used to
determine whether a button is pressed during mouse motion, or which button is
pressed if thislevel of granularity is needed. See “Using Manipulator Public Instance
Data’ on page 196 for details.

Example OnMouseMotion Method

The following example shows elements common in an interactive manipulator’s
OnMouseMotion method. For a complete working example, see “Example: Color
Table Manipulator” on page 217.

; Configure mouse notion nethod.
pro Exanpl eMani p: : OnMouseMdti on, oWn, x, y, KeyMods

If there is not a valid inmage, call superclass and return.
| F (~OBJ_VALI D(sel f.ol mage)) THEN BEG N

iTool Developer’s Guide Creating a New Manipulator

206 Chapter 8: Creating a Manipulator

Call our supercl ass.
sel f->1 DLi t Mani pul at or: : OnMbuseMdti on, oWn, x, y, KeyMds
RETURN
ENDI F

; Activate if nouse button is held down.
| F self.ButtonPress NE O THEN BEG N

Mani pul ate the visualization.

Wite manipulator information to the status bar
using inherited |IDLitl Messagi ng ProbeStatusMessage net hod.
sel f - >Pr obeSt at usMessage, ' Show user mani pul at or st atus’

Update the window to reflect the changes nade.
oW n- >Dr aw
ENDI F

Cal | our supercl ass.
sel f->1DLi t Mani pul at or: : OnMouseMdti on, oWn, x, y, KeyMods

END

Discussion — ThisOnMouseMation method first verifiesthat thereisavalid image,
olmage, in the class structure field. If not, call the superclass and return. If theimage
isvalid, make sure a mouse button is pressed during the mouse movement and
modify the image in some fashion. The IDLitIMessaging class (a superclass of
IDLitManipulator) provides access to the iTool status bar through the

ProbeStatusM essage method. Write asimple message, and update the window, which
can be accessed through the OnMouseMotion oW n parameter. Other available
parameters include window coordinates of the cursor and modifier keys. See
“IDLitManipulator::OnMouseMotion” in the IDL Reference Guide manual for
details. Before exiting, call our superclass.

Implementing an OnMouseUp Method

The manipulator class OnMouseUp method is called when a mouse up event occurs
over the target window. The method typically includes a call to the
CommitUndoValues method to commit the user’s changes during the mouse
transaction. (Thisis only required to support undo/redo functionality. See
“Manipulators and the Undo/Redo System” on page 194 for details.)

Example OnMouseUp Method

This OnMouseUp method can be used to reset class structure fields and to close
transactions.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 207

; Configure the nouse up nethod
PRO Exanpl eMani p: : OnMouseUp, oWn, X, y, iButton

I F (OBJ_VALI D(sel f.olmage)) THEN BEG N
; Commit this transaction.
i Status = sel f->Conm t UndoVal ues()
ENDI F

Reset the structure fields.
sel f.olmage = OBJ_NEW)

; Call our superclass.
sel f->1 DLi t Mani pul at or: : OnMbuseUp, oWn, x, y, iButton

END

Discussion — This example verifiesthat the there isavalid image, olmage, in the
class structure field. If so, call the CommitUndoValues, which in turn calls the
RecordFinal Values method of the associated operation. Before exiting, call our
superclass. This must be done to update the public instance data fields. Other
available parameters include window coordinates of the cursor and mouse button
information. See“IDLitManipulator::OnMouseUp” in the IDL Reference Guide
manual for details.

Creating an OnKeyboard Method

Once a manipulator has been started, and a mouse event has been registered in the
iTool window, the OnKeyboard method can support additional user interaction
through keyboard actions. The OnKeyboard event often includes execution logic
from each of the mouse methods. For example, you will likely need to verify that a
visualization has been selected (using thenSel ect i onLi st and pSel ect i onLi st
instance data fields). If the visualization is the correct type, and the manipulator
supports undo/redo functionality, call RecordUndoValues prior to modifying the
visualization in response to keyboard actions, and call CommitUndoValues prior to
exiting the method. See “Manipulators and the Undo/Redo System” on page 194 for
details.

The parameters of the OnKeyboard method return information about whether a key
has been pressed (Pr ess). If an ASCII character was selected (I sASCI |), access the
ASCII value (Char act er). If the key was not ASCII, you can return which symbol
key was pressed (KeyVal ue). The OnKeyboard method also provides access to the
window object (oW n), and the window coordinates of the cursor (x, y). See
“IDLitManipulator::OnKeyboard” in the IDL Reference Guide manual for details.

iTool Developer’s Guide Creating a New Manipulator

208 Chapter 8: Creating a Manipulator

Example OnKeyboard Method

The following example shows elements common to an OnKeyboard method, but not
any specific manipulation of avisualization. See “Example: Color Table
Manipulator” on page 217 for a complete example.

Configure the OnKeyboard net hod.
pro Exanpl eMani p: : OnKeyboard, oWn, $
I SASCl |, Character, KeyValue, X, Y, Press, Release, KeyMbds

; If current event is not a key press, then return.
IF (~Press) THEN $
RETURN

; Return if no visualization was sel ect ed.
IF (self.nSelectionList EQ0) THEN $
RETURN

Access the first selected itemand nmake sure it is an inmage.

ol mage = (*sel f.pSel ectionLi st)[0]
I F (OBJ_I SA(ol mage, ' I DLi t Vi sl mrage')) THEN BEQ N

; Set the olmage field of the class structure to be

; the retrieved |IDLitVislmge object.

self.olmage = (*sel f.pSel ectionList)[O0]
ENDI F ELSE BEG N

RETURN
ENDEL SE

; Record the current values for the selected images.
i Status = sel f->RecordUndoVal ues()

; *** |Interact with the visualization based upon key press.

; Commit this transaction.
i Status = sel f->Conmi t UndoVal ues()

; Wite information to the status bar
; using inherited IDLitlMessaging ProbeStatusMessage net hod.
sel f - >Pr obeSt at usMessage, ' Sorme manpul ation infornmation'

; Update the window to reflect the changes nade.
oW n- >Dr aw

END

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 209

Discussion

The OnKeyboard method will customarily contain portions of code from any
implemented mouse transaction methods. In this example, if a button press event
occurred, access the list of selected items and verify that the first item is an image. If
so, call IDLitManipulator::RecordUndoValues, as was previously shown in the
OnMouseDown method. Interact with the visualization as defined in an
OnMouseDown or OnMouseM otion method. After making modifications, call
RecordUndoValues to commit the transaction to the undo/redo buffer, previously
shown in the OnMouseUp method. Use the IDLitIMessaging:: ProbeStatusM essage
method to write information to the status bar of the iTool and access the oW n
parameter to update the window, as was previously shown in the OnMouseMotion
method.

Creating a RegisterCursor Method

It isauseful visual indication to the user that a manipulator has been activated if the
cursor changes. You can define a pre-existing cursor for a manipulator using the
DEFAULT_CURSOR property during initialization as described in “ Example Init
Method” on page 201. If none of the predefined cursors suit your needs, you can
create a custom cursor by calling a method that includes the

IDLitManpul ator::RegisterCursor method. Call this method to register a custom
cursor when the manipulator isinitialized.

The RegisterCursor method accepts a 16-element string array of 16 characters each
that defines the body, mask area, and hot spot of the cursor. See
“IDLitManipulator::RegisterCursor” in the IDL Reference Guide manual for details.
Thislets you quickly configure a cursor without having to create and reference a
separate bitmap file. The manipulator cursor is active when it is over a supported
visualization type.

Note
You must set the DEFAULT keyword for a custom manipulator cursor when you
use the RegisterCursor method to override the default system manipulator cursor.

Example DoRegisterCursor Method

The following example shows a custom cursor registration method,
DoRegisterCursor, which implements the IDLitManipul ator class RegisterCursor
method to create a custom cursor. See “ Example: Color Table Manipulator” on
page 217 for a complete example.

iTool Developer’s Guide Creating a New Manipulator

210 Chapter 8: Creating a Manipulator

Create and assign the default cursor for the mani pul ator.
PRO Exanpl eMani p: : DoRegi st er Cur sor

Define the default cursor for this nmanipul ator.
strArray = [$

L H#. . H#.
CHOL # ',
LRI
2 T #H##
| BHHRRHHRHHARRE.
A #

PR PDPPRDPPDHPHPH PP

"1
Regi ster the new cursor with the tool.
sel f->Regi sterCursor, strArray, 'LUT', /DEFAULT

END
Discussion

This DoRegisterCursor method defines a 16-element string array of 16 characters
each that represents the cursor. The strArray contains the following elements:

* the“#" symbolstranslate into the black areas of the cursor body
* the*.” symbolsindicate the white mask area

* the“$” definesthe hot spot, relating to the mouse cursor position when the
manipulator is active

Pass the string array and cursor name (the Name argument value) to the
RegisterCursor method. Set the DEFAULT keyword to indicate thisis the default
cursor for this manipulator.

Note
The Name argument specified here is the same as that returned by the
GetCursorType method. See “IDLitManipulator::GetCursorType” in the IDL
Reference Guide manual for more information.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 211

Creating GetProperty or SetProperty Methods

The manipulator class GetProperty method retrieves property values from the
manipulator object instance or from instance data of other associated objects. It
should retrieve the requested property value, either from the manipulator object’s
instance data or by calling another class' GetProperty method. See
“IDLitManipulator::GetProperty” in the IDL Reference Guide manual for additional
details.

The manipulator class SetProperty method stores property valuesin the manipulator
object’sinstance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the manipulator object’s
instance data or by calling another class' SetProperty method. See
“IDLitManipulator::SetProperty” in the IDL Reference Guide manual for additional
details.

Example GetProperty and SetProperty Methods

The following example code shows a very simple GetProperty method for the
Exanpl eMani p operation:

PRO Exanpl eMani p: : Get Property, _REF _EXTRA = _extra

; Get superclass properties.
| F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->1DLitMani pul ator:: GetProperty, _EXTRA = _extra
END

PRO Exanpl eMani p: : Set Property, _REF_EXTRA = _extra

| F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->1DLitMani pul ator:: SetProperty, _EXTRA = _extra
END

Discussion

The GetProperty and SetProperty methods first define the keywords they will accept.
There must be a keyword for each property of the manipulator type. The keyword
inheritance mechanism allows properties to be retrieved from or set on the

Exanpl eMani p class superclasses without knowing the names of the properties.

In this example, there are no properties specific to the Exanpl eMani p object, so we
simply use the N_ELEMENTS function to check whether the _ext r a structure
contains any elements. If it does, we call the superclass GetProperty and SetProperty
methods, passing in al of the keywords stored in the _ext r a structure.

iTool Developer’s Guide Creating a New Manipulator

212

Chapter 8: Creating a Manipulator

Creating the Manipulator Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must be defined before any
objects of the type are created. In practice, when the IDL OBJ NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 23 of the Building IDL Applications manual.

Subclassing From the IDLitManipulator Class

The IDLitManipulator classis the base class for al iTool manipulators. In almost all
cases, new manipulatorswill be subclassed either from the IDLitManipulator class or
from aclass that is a subclass of IDLitManipulator.

Note
If you are implementing a number of manipulators that provide similar
functionality, and you want the user to choose one out of the group of items, you
may want to create a manipulator container. See “Manipulators and Manipulator
Containers’ on page 186 for an introduction to these objects.

See“IDLitManipulator” in the IDL Reference Guide manual for details on the
methods and properties available to classes that subclass from IDLitManipulator.

Example Class Structure Definition

Thefollowing isthe class structure definition for the Exanpl eMani p operation class.
This procedure should be the last procedure in afile named
exanpl emani p__define. pro.

; Class Definition.
PRO Exanpl eMani p__defi ne

Define the MyMani pul ator class structure, which inherits the
| DLi t Mani pul ator cl ass.
struct = { Exanpl eMani p, I NHERI TS | DLit Mani pul at or}

END

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 213

Discussion

The purpose of the structure definition routine is to define anamed IDL structure
with structure fields that will contain the manipulator object instance data. The
structure name should be the same as the manipulator’s class name — in this case,
Exanpl eMani p.

Like many iTool manipulators, Exanpl eMani p is created as a subclass of the
IDLitManipulator class. The Exanpl eMani p manipulator class does not include any
instance data of its own.

Note
This example isintended to demonstrate how simple it can be to create a new
manipulator class definition. While the class definition for a manipulator class with
significant extrafunctionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same. See * Example:
Color Table Manipulator” on page 217 for amore complex class structure
definition.

iTool Developer’s Guide Creating a New Manipulator

214 Chapter 8: Creating a Manipulator

Registering a Manipulator

Before a manipulator can be activated by an iTool, the manipulator’s class definition
must be registered as being available to the iTool. Registering a manipulator with the
iTool links the class definition file that contains the actual IDL code that defines the
manipulator with a simple string that names the manipulator. Code that defines a
manipulator in aniTool usesthe name string to specify which manipulation should be
performed.

Using IDLitTool::RegisterManipulator

In most cases, you will register a manipulator with the iTool in the iTool’s class I nit
method. Registration ensures that the manipulator is available to the iTool. See
“Creating aNew iTool Class’ on page 85 for details on theiTool class Init method.

To register amanipulator, call the IDLitTool::RegisterManipulator method:
sel f - >Regi st er Mani pul at or, Mani pul at or Name, Mani pul at or _Cl ass_Nane

where ManipulatorName is the string you will use when referring to the manipulator,
and Manipulator_Class Nameisastring that specifies the name of the class file that
contains the manipulator’s definition.

Note
Thefile Mani pul at or _Cl ass_Nane__defi ne. pr o must exist somewherein
IDL’s path for the manipulator type to be successfully registered.

See“IDLitTool::RegisterManipulator” in the IDL Reference Guide manual for
details.

Specifying Properties During Manipulator Registration

You can specify any property of the IDLitManipulator, IDLitIMessaging, and
IDLitComponent classes when registering a manipulator. The following properties
may be of particular interest:

DEFAULT

Set this manipulator as the default manipulator for the iTool. When set, the
manipulator is active when the tool is launched.

Registering a Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 215

DESCRIPTION

A string value that briefly describes how to use the manipulator. Thisstring is
displayed in the left side of the status bar when the manipulator is activated. See
“Example: Color Table Manipulator” on page 217 for an example.

ICON

A string value giving the name of anicon to be associated with this object. Typically,
this property is the name of a bitmap file that is used to represent the manipulator on
the toolbar. The location of the icon image file determines how it is specified. If it
existsinther esour ce/ bi t maps subdirectory of the IDL installation, simply use
the name of the file minus the extension. For example, ' crop' references the Crop
tool’s associated icon, cr op. bnp. If theicon image is in the same directory as the
tool class definition file, specify the file name, ‘cr op. bnp'. See*Icon Bitmaps’ on
page 43 for details on how to locate and reference bitmap icon files.

IDENTIFIER

A string that will be used as the identifier of the object. Identifier strings specify
where within an iTool’s object hierarchy an object is located; this, in turn, may affect
whether and where the object isrevealed in theiTool’s graphical user interface. See
“iTool Object Identifiers’ in Chapter 2 of theiTool Developer’s Guide manual for
details about how identifiers are named.

If this property is not specified, then the value of the Manipulator Name argument is
used asthe identifier.

TYPES

A string or an array of strings indicating the types of data that the manipulator can
modify. iTools data types are described in Chapter 3, “ Data Management”. Set this
property to anull string (' *) to specify that the manipulator can be applied to all
types of data.

iTool Developer’s Guide Registering a Manipulator

216 Chapter 8: Creating a Manipulator

Unregistering a Manipulator

If you are creating anew iTool from an existing iTool class, you may want to remove
amanipulator registered for the existing class from your new tool. This can be useful
if you haveaniTool classthat implementsall of the functionality you need, but which
registers a manipulator you don’t want included in your iTool. Rather than recreating
theiTool classwithout the manipulator, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted

mani pul ator.

Unregister amanipulator by calling the IDLitTool::UnregisterManipulator method in
the Init method of your iTool class:

self -> UnregisterManipulator, identifier
where identifier is the string name used when registering the manipulator.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like the a standard tool, with the exception that it would not allow text
annotations, you could include the following method call in your iTool’s Init method:

sel f -> UnregisterManipulator, 'Text'
To remove al annotation manipulators, include the following:

sel f -> Unregi sterMnipulator, 'Annotation'
Finding the Identifier String

To find the string value used as the Identifier argument to the UnregisterManipul ator
method, you can use the IDLitTool::Findl dentifiers method. This can be used to
return the identifier of each manipulator registered with an active tool when you
specify the MANPULATORS keyword as follows:

Get the tool reference and all registered mani pul ator ids.
i dt ool = TGETCURRENT(Tool = oTool)
vMani p = oTool - >Fi ndl dentifi ers(/MANI PULATORS)
PRI NT, vManip

An array of valuesis printed to the Output Log window in the format of:
/ TOCOLS/ Tool Name/ MANI PULATORS/ Mani pul at or Nane

Specify the ManipulatorName as the argument to UnregisterManipulator method to
remove that manipulator from the tool.

Unregistering a Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 217

Example: Color Table Manipulator

The following example creates a custom manipulator that allows you to interactively
change the palette applied to a single-plane image. After activating the manipulator
by selecting the Color Table tool icon on the toolbar, position the cursor over the
image and with the mouse button held down, move the mouse to the right or left to
change the palette.

Note
The class definition code for this example iTool isincluded in the file
exanpl e3t ool __defi ne. prointheexanpl es/ doc/ it ool s subdirectory of
the IDL distribution. Enter the following at the IDL prompt to create an instance of
theiTool.

exanpl e3t ool

A segment of thetool created in this exampleis shown in the following figure.

Custom Manipulator Icon

##l Example Color Table Tool [Untitled*]
File Edit Insert Operations Window Help

mlP=E = RS Y k|0|{"?|:12|1|l_| & frooz =] A|\|I:||o|<e|~s:-.,|

-
1| | »

|Elic:k over image & drag right or left to change color table |EOI0r table number: 14
RegisterManipulator ProbeStatusMessage
DESCRIPTION Text Method Text

Figure 8-2: Custom iTool with Color Table Manipulator

iTool Developer’s Guide Example: Color Table Manipulator

218 Chapter 8: Creating a Manipulator

This example creates three files:

¢ Manipulator Class Definition (exanpl e3_nani ppal ette__defi ne. pro) —
defines the characteristics and actions of the manipulator in response to mouse
and keyboard events. See “ Color Table Manipulator Class Definition” below.

e iTool Class Definition (exanpl e3t ool __defi ne. pr o) —definesthistool’s
inheritance of the IDLitToollmage tool and registers the custom manipulator.
See “Custom Tool Class Definition for the Color Table Manipulator” on
page 225.

¢ iTool Launch Routine (exanpl e3t ool . pr o) —accepts and initializes any
image arguments by creating the necessary data and adding it to the tool’s
parameter set. The launch routine registers the tool using ITREGISTER and
then creates an instance of the tool using IDLITSYS_CREATETOOL
function. See “Tool Launch Routine for Custom Color Table Manipulator” on
page 226.

Once you have created and compiled the necessary files, see “ Running the Color
Table Manipulator Example” on page 228 for instructions on how to recreate the
display shown in the previous figure.

Color Table Manipulator Class Definition

Define the color table manipulator (exanpl e3_nani ppal ette__defi ne. pro).
This class definition file initializes the manipulator, creates a cursor, and defines the
manipulator actions in response to mouse and keyboard events.

Note
The class definition code for this example manipulator isincluded in thefile
exanpl e3_nmani ppal ette__define. prointheexanpl es/ doc/itool s
subdirectory of the IDL distribution. Enter
exanpl e3t ool
at the IDL prompt to create an instance of theiTooal, or

.conpi |l e exanpl e3_nani ppal ette__define

to open the manipulator . pr o filein the IDL editor.

. R S O S S S S S R O O
’

Create the col or table mani pul ator cl ass definition.
; Always use keyword inheritance (the _REF _EXTRA keyword)
; to pass keyword paraneters through to called routines.

Example: Color Table Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator

FUNCTI ON exanpl e3_mani ppal ette::1nit, $
_REF_EXTRA=_extra

COWPI LE_OPT idl 2, H DDEN

; Initialize the mani pul ator.
IF (~self->IDLitManipulator::Init($
NAME=' Col or Table', $
TYPES=[' I DLI MAGE'], $
OPERATI ON_I DENTI FI ER=" SET_PROPERTY", $
PARAMETER | DENTI FI ER="VI SUALI ZATI ON_PALETTE", $
_EXTRA = _extra)) THEN $
RETURN, O

; Register the cursor of the nanipul ator.
sel f - >exanpl e3_mani ppal ett e: : DoRegi st er Cur sor

; Initialize a working palette.
self.oPalette = OBJ_NEW' | DLgrPal ette')

; Indicate success if all has succeeded.
RETURN, 1
END

219

R R R S O O S S S S

; Select single plane imges from anong the sel ected

; visualizations.

PRO exanpl e3_nani ppal ette: : Sel ect Si ngl ePl anel mages, $
N_I MAGES=nl mages

; If nothing is selected, return.
IF (self.nSelectionList EQ0) THEN $
RETURN

; Qull out multi-channel (RGB and RGBA) inages fromselection |ist.

; Cycle through the public instance pointer, pSelectionList,
; accessing all images. Use the nunber of selected itens,
; in nSelectionList, to access each object in pSel ectionList.

nvalid = 0
nlmages = 0
FOR i =0, self.nSelectionList-1 DO BEG N
ol mage = (*sel f.pSel ectionList)[i]
| F (OBJ_I SA(ol mage, ' I DLitVi sl mage')) THEN BEGQ N

; Increment nlnages counter.
nl mages++

; Determine if the image is single plane. If so,

; image to the array of valid images and increment the

cont ai ned

iTool Developer’s Guide Example: Color Table Manipulator

220

Chapter 8: Creating a Manipulator

: nValid counter.

ol mage- >CGet Property, N_I MAGE_PLANES=nl ngPl anes

I F (nlngPl anes EQ 1) THEN BEGQ N
validlngs=(nValid gt 0) ? [validlngs, olmage] : [olmage]
nVal i d++

ENDI F

ENDI F
ENDFOR

IF (nvalid GI 0) THEN BEG N
; Store valid inages using pSel ectionList and nSel ecti onLi st.
*sel f. pSel ectionList = validlngs
sel f.nSel ectionList = nValid
ENDI F ELSE BEG N
; If one or nore images had been sel ected, but none are
; single-plane, then issue nessage.
IF (nlmages GI 0) THEN BEG N
sel f->Error Message, $

"Pal ettes can only be changed for single-plane images.', $
TI TLE=' Col or Tabl e Mani pul at or Message', $
SEVERI TY=2
ENDI F

; No inmages to nmanipulate - reset pSel ectionList and
: nSel ectionLi st.
voi d = TEMPORARY(*sel f. pSel ecti onLi st)
sel f.nSel ectionList = 0
sel f. ol mage = OBJ_NEW)
ENDEL SE
END

REE R bk O kR Ik R R kR R R S o O SRR o R kb
’

; Configure the mouse down method. This is activated when

; the nouse button is clicked over the inmge.

PRO exanpl e3_nmni ppal ette:: OnMouseDown, oWn, x, y, iButton, $
KeyMods, ndicks

; Call our superclass.
sel f->1 DLi t Mani pul at or: : OnMouseDown, $
oWn, x, y, iButton, KeyMdds, ndicks

; Return if there is no selection. QG herw se validate sel ection.
IF (self.nSelectionList EQO0) THEN $

RETURN
sel f - >Sel ect Si ngl ePl anel nages, N_| MAGES=nl nages

; If no visualization neets requirenments, return.
IF ((self.nSel ectionList EQO0) & (nlmages GI 0)) THEN BEG N
; Revert to default manipul ator.

Example: Color Table Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 221

oTool = sel f->GetTool ()
oTool - >Act i vat eMani pul ator, /DEFAULT
RETURN

ENDI F

; Use the first image in the selection list as the
; color table selection target.

self.olmage = (*sel f.pSel ectionList)[O0]

sel f. ol mage- >Get Property, GRI D_DI MENSI ONS=i ngDi ns
self.ingDins = ingDi ns

; Record the current values for the sel ected images.
i Status = sel f->RecordUndoVal ues()
END

EEE R S b Sk S R S S e o S R S o R R R S S R S o S S S R R

; Configure the nouse up nethod
PRO exanpl e3_mani ppal ette: : OnMouseUp, oWn, x, y, iButton

I F (OBJ_VALI D sel f.ol mage)) THEN BEG N
; Commit this transaction.
i Status = sel f->Conm t UndoVal ues()
ENDI F

;. Reset the structure fields.
sel f. ol mage = OBJ_NEW)

; Call our superclass.
sel f->1 DLi t Mani pul at or: : OnMouseUp, oWn, x, y, iButton
END

Rk R bk O kR Sk R R Rk o kR R o R SRR b O
’

; Configure nmouse notion nethod.
PRO exanpl e3_nani ppal ette: : OnMouseMdtion, oWn, x, y, KeyMods

; If there is not a valid inmage object, return.
| F (~OBJ_VALI D(sel f.ol mage)) THEN BEG N

; Call our superclass.
sel f->1 DLi t Mani pul at or: : OnMouseMdti on, oWn, x, y, KeyMdds
RETURN

ENDI F

; Activate if nouse button is held down.
I F self.ButtonPress NE O THEN BEG N

; Map wi ndow coordi nates to i mage data coordi nates.
sel f. ol mage- >W ndowToVis, x, y, 0, dataX, dataY, dataz

iTool Developer’s Guide Example: Color Table Manipulator

222

Chapter 8: Creating a Manipulator

; Map image data coordinates to pixel coordinates.
sel f. ol mage- >GeonetryToGid, dataxX[0], dataY[O], imgX ingY

; If the x inage dinension is greater than the nunber
; of colortables find the range of how many pi xels per
; colortable specification.
|F sel f.ingDi ms[0] LT 41 THEN BEG N

self.colortable = FI X(ABS(i ngX))
ENDI F ELSE BEG N

stepSize = FI X(sel f.ingDi ns[0]/41)

sel f.colorTable = (FI X(i ngX/ stepSize) > 0) < 40
ENDEL SE

; Assign the color table to the palette.

sel f. oPal ette->LoadCT, self.colortable

sel f.oPal ette->Get Property, BLUE_VALUES=bl ue, $
GREEN_VALUES=gr een, RED_VALUES=r ed

pal ette = TRANSPOSE([[red],[green],[blue]])

; Apply the palette to the inmage. This automatically
; notifies the observer (the window) to update itself.
sel f. ol mage- >Set Property, VI SUALI ZATI ON_PALETTE=pal ette

; Wite the color table nunber to the status bar using the
;inherited IDLitlMessagi ng ProbeStatusMessage mnet hod.
sel f-> ProbeStatusMessage, 'Color table nunber: ' $
+ STRTRIM String(sel f.col ortable), 2)
ENDI F

; Call our superclass.
sel f->1DLi t Mani pul at or: : OnMouseMdti on, oWn, x, y, KeyMods
END

REE R S b ok S R R S S S o R R R S S S R R R R S S S R R S S R R R S S

; Configure Keyboard nethod to respond to right or Ieft arrow keys.
pro exanpl e3_nani ppal ette: : OnKeyboard, owWn, $
I sSASCI |, Character, KeyValue, X, Y, Press, Release, KeyMds

; If not a keyboard press event, return.
IF (~Press) THEN $
RETURN

; Retrieve the list of currently selected visualizations.
oSel ect Li st = oW n->Cet Sel ect edl t ens(COUNT=nSel ect)
sel f.nSel ectionLi st = nSel ect

IF (nSelect GI 0) THEN BEG N
; CQull selection list to include only single plane imges.
*sel f. pSel ectionLi st = oSel ect Li st

Example: Color Table Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 223

sel f->Sel ect Si ngl ePl anel mages
ENDI F

; If there are no valid single-plane i nages sel ected, return.
IF (self.nSelectionList EQ0) THEN $
RETURN

; Use the first image in the selection list as the
; color table selection target.

self.olmage = (*sel f.pSel ectionList)[0]

sel f. ol mage->CGet Property, GRI D_DI MENSI ONS=i ngDi s
self.imgDi ms = i ngDi ns

; Record the current values for the selected images.
i Status = sel f->RecordUndoVal ues()

IF (~ I'sASCl|) THEN BEG N
CASE KeyVal ue OF

; Left arrow key.
5: IF self.colortable EQ O THEN self.colortable = 40 $
ELSE | F self.colortable NE 0 THEN $
self.colortable = self.colortable - 1

; Right arrow key.
6: IF self.colortable EQ 40 THEN self.colortable = 0 $
ELSE I F self.colortable NE 40 THEN $
self.colortable = self.colortable + 1
ENDCASE
ENDI F

; Assign the color table to the palette.

sel f. oPal ette->LoadCT, self.colortable

sel f. oPal ette->Get Property, BLUE VALUES=bl ue, $
GREEN_VALUES=gr een, RED VALUES=r ed

pal ette = TRANSPOSE([[red],[green],[blue]])

; Mdify the palette of the image. This automatically
; notifies the observer (the window) to update itself.
sel f. ol mage->Set Property, VI SUALI ZATI ON_PALETTE=pal ette

; Commit this transaction.
i Status = sel f->Conmi t UndoVal ues()

; Wite the color table nunber to the status bar using the
; inherited IDLitl Messagi ng ProbeSt at usMessage net hod.
sel f-> ProbeSt at usMessage, 'Color table nunber: ' $

+ STRTRIM String(sel f.colortable), 2)

iTool Developer’s Guide Example: Color Table Manipulator

224 Chapter 8: Creating a Manipulator

END

RE kR I bk O O R R R Rk Ik kR R kR I R R I
’

; Configure the DoRegi sterCursor nethod
; This nethod will create the cursor for the nanipul ator.
pro exanpl e3_nani ppal ette: : DoRegi st er Cur sor

conpi |l e_opt idl2, hidden

; Define the default cursor for this nanipulation.
strArray = [$

L CH,
R # ',
| B &L #H##
| BHHRRHHRHHARRE.

3 -
*
F*
*
*
*
**
*
**
*
*
F*
*
+*
AR PBDHRPRPHHHH

; Register the new cursor with the tool.
sel f->Regi sterCursor, strArray, 'LUT", /DEFAULT
END

Rk R I bk O kR R Sk I I kR R S I R b R R I

PRO exanpl e3_nani ppal ette: : d eanup

; Call superclass deanup nethod
sel f->1 DLi t Mani pul ator:: C eanup

OBJ_DESTROY, self.oPalette
END

EIE R S I I S R I R S S
)

; Class Definition
pro exanpl e3_mani ppal ette__define
conpi |l e_opt idl2, hidden

; Define the exanpl e3_nani ppal ette class structure which inherits

; the IDLitManipulator class and class instance data used by this
; mani pul at or.

Example: Color Table Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 225

voi d = {exanpl e3_mani ppal ette, $

inherits IDLitMani pulator, $; Superclass
ol mage: OBJ_NEW), $; Target image.
i mgDi ms: DBLARR(2), $; I mage di nmensions
oPal ette: OBJ_NEW), $; Working palette.
colortable: O $; Color table value
}
END

Custom Tool Class Definition for the Color Table Manipulator

Create the class definition for the tool containing the custom manipulator

(exanpl e3t ool __defi ne. pro). Thisexample inherits the IDLitToolImage class
functionality. In the tool initialization, register the custom manipulator. The
DESCRIPTION string appears in the status area when the manipul ator is activated.

Note
The class definition code for this example tool isincluded in thefile
exanpl e3t ool __defi ne. prointheexanpl es/ doc/ it ool s subdirectory of
the IDL distribution. Enter
exanpl e3t ool
at the IDL prompt to create an instance of theiTool, or

.conpi |l e exanpl e3tool __define

to open the. pr o filein the IDL editor.

; Tool Initialization
FUNCTI ON exanpl e3tool : : I nit, _REF_EXTRA=_extra

Initialize the inherited ilmage tool. If this fails, return.
IF (~(self->IDLitTool Image::Init(_EXTRA = _extra))) THEN $
RETURN, O

; Register the new col or table mani pulator. The Descri ption
; appears in the status bar when the manipulator is activated.
sel f->Regi ster Mani pul ator, 'Color Table', $

" exanpl e3_mani ppal ette', $

DESCRI PTION='C ick over image & drag right or left' $

+ ' to change color table, $

| CON = FI LEPATH(' exanpl e3_lut.bmp', $

SUBDI RECTORY=[' exanmpl es', 'doc', 'itools'])

iTool Developer’s Guide Example: Color Table Manipulator

226 Chapter 8: Creating a Manipulator

;I ndi cate success.
RETURN, 1

END

EIE R S R I I S R I S S

; Tool Class Definition
PRO exanpl e3t ool __defi ne

Define the structue of the tool.
structure = {exanpl e3tool, $

I NHERI TS I DLi t Tool Image $; provides itool

}
END

interface

Tool Launch Routine for Custom Color Table Manipulator

Create alaunch routine (exanpl e3t ool . pr o) for thetool containing the custom
color table manipulator. Create an IDLImagePixels type of IDLitData object if the

user initializes the tool with a data argument.

Note

The class definition code for this example manipulator isincluded in thefile
exanpl e3_mani ppal ette__define. prointheexanpl es/ doc/itools

subdirectory of the IDL distribution. Enter

exanpl e3t ool

at the IDL prompt to create an instance of theiTool, or
.conpi | e exanpl e3t ool

to open the. pr o filein the IDL editor.

Example: Color Table Manipulator

iTool Developer’s Guide

Chapter 8: Creating a Manipulator 227

PRO exanpl e3tool, data, identifier = identifier, _REF EXTRA=_extra

; Check for data entered by the user. Add input to a paraneter set
; if it exists.

nparams = N_PARAMS()

IF (nparans GI' 0) THEN BEG N

Create an | DLitParaneterSet object to pass to the
; INI'TI AL_DATA keyword to | DLitSys_CreateTool .
oparnmset = OBJ_NEW' | DLi t Par anet er Set')

; Verify data is present.
IF (n_elements(data) GI 0) THEN BEG N

; Create an | DLImagePi xel s type |DLitData object.
odata = OBJ_NEW' | DLi t Dat al DLI nmagePi xel s')

; Copy the data to the data object
result = odata->SetData(data, 'inagepixels', $
_EXTRA = _extra)

; Add the IDLitData object to the paraneter set.
opar nmset - >Add, odata, PARAMETER_NAME = 'i nmagepi xel s'
ENDI F

; Create a default palette for the inage.
ranp = Bl NDGEN(256)
oPalette = OBJ_NEW' IDLitDatal DLPalette', $
TRANSPOSE([[ranp], [ranp], [ranp]]), $
NAME = 'Pal ette')
oPar nSet - >Add, oPal ette, PARAMETER NAME = ' PALETTE
ENDI F

; Register the new tool.
| TREG STER, ' Col or Table Tool', 'exanple3tool'

; Create an instance of the new tool.
identifier = IDLitSys_CreateTool (' Col or Table Tool', $
NAME = 'Col or Table Tool', $
VI SUALI ZATION_TYPE = ['IMAGE'], $
I NI TI AL_DATA = oparnset, _EXTRA = _extra, $
TITLE = ' Exanpl e Col or Tabl e Tool ')
END

iTool Developer’s Guide Example: Color Table Manipulator

228 Chapter 8: Creating a Manipulator

Running the Color Table Manipulator Example

Save and compile all of the files. Enter the following at the command line to
reproduce the display shown in “Example: Color Table Manipulator” on page 217.

ctboneFil e = FI LEPATH(' ct bonel57.jpg' , $
SUBDI RECTORY = ['exanples', 'data'])
READ JPEG, cthboneFile, ctbonelng

Launch the exanple tool with the input data.
exanpl e3t ool , ctbonel ng

Select the Color Table tool on the toolbar and move the cursor over the image. Hold
down the left-mouse button and drag the cursor to the right and left to scroll through
the available color tables. You can also use the right and |eft arrow keysto modify the
color table value.

Example: Color Table Manipulator iTool Developer’s Guide

Chapter 9:
Creating a File Reader

This chapter describes the process of creating an iTool file reader.

Overviewcoviiiiinnannnn. 230 RegisteringaFileReader 245
Predefined iTool FileReaders 231 UnregisteringaFileReader 246
CreatingaNew FileReader 234 Example TIFFFileReader 248

iTool Developer’s Guide 229

230

Chapter 9: Creating a File Reader

Overview

A file reader isan iTool component object class that defines how data stored in afile
should be imported into the iTool environment. File readers have mechanisms for
determining the type of data stored in afile, which alowsthem to create IDLitData
objects from the stored data. Some file readers implement a graphical user interface
allowing the user to specify the format of data before importing into the iTool; others
read a well-defined file type and operate more or less automatically. Some examples
of iTool file readers are:

the ASCII file reader, which usesthe IDL ASCII_TEMPLATE and
READ_ASCII functions to allow the user to define the format of datain atext
file,

various image file readers, which allow the user to import data stored in JPEG,
BMP, PNG, and other well-defined image format files,

ageneric binary file reader, which allows the user to specify the format of files
containing binary data.

A number of standard file readers are predefined and included in the IDL iTools
package as described in “ Predefined i Tool File Readers’ on page 231.

The File Reader Creation Process

To create anew iTool file reader, you will do the following:

Choose an iTool file reader class on which your new operation will be based.
Inamost all cases, you will base your new operation on the IDLitReader class,
which handles registration of standard file properties and provides standard
messaging features.

Provide methods to check the type of data stored in the file and place the
retrieved data in a data object.

Set data object properties.

This chapter describes the process of creating a new file reader based on the
IDLitReader class.

Overview

iTool Developer’s Guide

Chapter 9: Creating a File Reader 231

Predefined iTool File Readers

TheiTool system distributed with IDL includes a number of predefined file readers.
You can include these file readers in an iTool directly by registering the class with
your iTool (as described in “ Registering a File Reader” on page 245). You can also
create a new file reader class based on one of the predefined classes.

IDLitReadASCII

The iTools ASCII file reader usesthe IDL READ_ASCII and ASCII_TEMPLATE
functionsto read datafrom an ASCII fileinto an IDL variable or variables. It presents
awizard interface that allows the user to define the structure of the datain the ASCII
file and specify which data should be included.

Registered Properties

None
IDLitReadBinary

TheiTools Binary file reader usesthe IDL READ_BINARY and
BINARY_TEMPLATE functionsto read datafrom abinary datafileinto an IDL
variable or variables. It presents awizard interface that allows the user to define the
structure of the datain the binary file and specify which data should be included.

Registered Properties

TEMPLATE — A template structure (previously defined by the
BINARY_TEMPLATE function) describing the file to be read.

IDLitReadBMP

TheiTools BMP file reader usesthe IDL READ_BMP function to read a* . brp file
and place theimage datain an iTool image data object.

Registered Properties

None
IDLitReadDICOM

TheiTools DICOM reader usesthe IDL READ_DICOM functiontoread a*. dcm
and place the image datain an iTool image data object.

iTool Developer’s Guide Predefined iTool File Readers

232 Chapter 9: Creating a File Reader

Registered Properties

None
IDLitReadISV

The iTools Saved Variables file reader restores a saved iTool state (*. i sv) file. All
data objects in the file are placed into the current iTool data manager session, and all
visualization objects are restored and displayed.

Registered Properties

None
IDLitReadJPEG

TheiTools JPEG file reader usesthe IDL READ_JPEG proceduretoreada*. j pg or
* . j peg file and place the image data in an iTool image data object.

Registered Properties

None
IDLitReadJPEG2000

TheiTools JPEG 2000 file reader uses the IDL READ_JPEG2000 procedure to read
a*.jp2,*.jpx,or*.j2k fileand place the image datain aniTool image data
object.

Registered Properties

DISCARD_LEVELS — An integer specifying the number of highest resolution levels
which will not appear in the result. See the DISCARD_LEVELS keyword to the
IDLffJPEG2000::GetData method for additional details.

QUALITY_LAYERS — An integer specifying the maximum number of quality layers
which will be returned in the result. Each layer contains the information required to
represent the image at a higher quality, given the information from all the previous
layers. Seethe MAX_LAY ERS keyword to the IDLffJPEG2000::GetData method for
additional details.

IDLitReadPICT

TheiTools PICT filereader usesthe IDL READ_PICT proceduretoread a*. pct or
*. pi ct fileand place the image datain an iTool image data object.

Predefined iTool File Readers iTool Developer’s Guide

Chapter 9: Creating a File Reader 233

Registered Properties

None
IDLitReadPNG

TheiTools PNG file reader usesthe IDL READ_PNG function to read an ESRI
shapefile and place the polygons or polylinesin an iTool image data object.

Registered Properties

None
IDLitReadShapefile

The iTools Shapefile reader uses the IDLffShape object to read a* . png file and
place the image (and, optionally, palette) datain an iTool image data object.

Registered Properties

ATTRIBUTE_NAME — The name of an attribute of the shapefile that contains the
name of the individual item within the shapefile.

COMBINE_ALL — A boolean value specifying whether all shapes contained in the
shapefile should be combined into asingle visualization in the iTool.

IDLitRead TIFF

TheiTools TIFF file reader usesthe IDL READ_TIFF functiontoreada*. ti f or

*. tiff fileand place theimage (and, optionally, palette) datain aniTool image data
object.

Registered Properties

IMAGE_INDEX — An integer specifying the index of the image within the TIFF file
that should be read into the image data object.

IMAGE_STACKING — An integer specifying the stacking order for reading multi-
image TIFF filesinto volumes.

IDLitRead WAV

TheiTools WAV file reader usesthe IDL READ_WAV functiontoread a*. wav file
and place the datain an iTool vector object.

Registered Properties

None

iTool Developer’s Guide Predefined iTool File Readers

234

Chapter 9: Creating a File Reader

Creating a New File Reader

AniTool file reader class definition file must (at the least) provide methods to
initialize the file reader class, get and set property values, handle changes to the
underlying data, clean up when the file reader is destroyed, and define the file reader
class structure. Complex file reader types will likely provide additional methods.

The process of creating an file reader is outlined in the following sections:

“Creating an Init Method” on page 234

“Creating a Cleanup Method” on page 238

“Creating a GetProperty Method” on page 239
“Creating a SetProperty Method” on page 240
“Creating an ISA Method” on page 241

“Creating a GetData Method” on page 242

“Creating the Class Structure Definition” on page 243

Creating an Init Method

Thefilereader class Init method handles any initialization required by the file reader
object, and should do the following:

define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

register any properties of your file reader, and set property attributes as
necessary

perform other initialization steps as necessary

return the value 1 if the initialization steps are successful, or 0 otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 235

function signature for an Init method for afile reader generally looks something like
this:

FUNCTI ON MyReader: : I nit, MYKEYWORDL = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF_EXTRA = _extra

where MyReader isthe name of your file reader class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “ Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The file reader class Init method should call the Init method of any required
superclass. For example, if your file reader is based on an existing file reader class,
you would call that class' Init method:

success = sel f->SoneFi|l eReaderC ass: :Init(_EXTRA = _extra)

where SomeFileReader Class is the class definition file for the file reader on which
your new file reader isbased. The variable success will contain al if the
initialization was successful.

Note
Your file reader class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
O:

I F (sel f->SonmeFi |l eReaderd ass:: I nit(_EXTRA = _extra) EQ 0) THEN $
RETURN, 0O

This convention is used in all file reader classes included with IDL. RS| strongly
suggests that you include similar checks in your own class definition files.

iTool Developer’s Guide Creating a New File Reader

236

Chapter 9: Creating a File Reader

Keywords to the Init Method

Properties of the file reader class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitReader class and the IDLitComponent class are
available to any file reader class. See “IDLitReader Properties’ and
“IDLitComponent Properties’ in the IDL Reference Guide manual.

Note
Always use keyword inheritance (the _EXTRA keyword) to pass keyword
parameters through to the superclass. (See “ Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new file reader class from any existing file reader class, in
many cases, file reader classes you create will be subclassed directly from the base
class IDLitReader:

IF (self->IDLitReader::Init(Extensions, EXTRA = extra) EQO0) $
THEN RETURN, O

where Extensionsis astring or array of strings specifying the filename extensions
readable by your file reader.

Note
The value of the Extensions argument is used only to display the proper filename
filter when an Open dialog is displayed — it is not a check for the proper filetype.
The IsA method must check the file to determine whether it is readable by your file
reader.

The IDLitReader class provides the base iTool file reader functionality used in the
tools created by RSI. See “ Subclassing from the IDLitReader Class’ on page 243 for
details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file reader classes that
subclass from your file reader class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 237

Registering Properties

File reader objects can register properties with the iTool. Registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “Properties of the iTools System” on page 80), and can be modified interactively
by users. TheiTool property interface is described in detail in Chapter 4, “ Property
Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

sel f->Regi sterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 70 for details.

Note
A file reader need not register any propertiesat all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your file reader
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

sel f->Set PropertyAttribute, ldentifier

where |dentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword. See “Property Attributes” on page 74 for additional details.

Passing Through Caller-Supplied Property Settings

If you haveincluded the _ REF_EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. This mechanism
allows you to specify property settings when the Init method is called; simply include
each property’s keyword/value pair when calling the Init method, and include the
following in the body of the Init method:

IF (N_ELEMENTS(_extra) GI 0) THEN $

iTool Developer’s Guide Creating a New File Reader

238 Chapter 9: Creating a File Reader

sel f->My/Reader:: Set Property, _EXTRA = _extra

where MyReader is the name of your file reader class. This line has the effect of
passing any “extra’ keyword valuesto your file reader class’ SetProperty method,
where they can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “Creating a SetProperty Method” on
page 240 for details.

Example Init Method
FUNCTI ON Exanpl eReader::1nit, _REF EXTRA = _extra

IF (self->IDLitReader::Init('ppm, FILETYPE='PPM, $
DESCRI PTI ON="PPM Fi | e Reader", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, O

RETURN, 1

END

Discussion

The Exanpl eReader classis based on the IDLitReader class (discussed in
“Subclassing from the IDLitReader Class’ on page 243). Asaresult, al of the
standard features of aniTool filereader class are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eReader Init method does the following things:

1. CadlstheInit method of the superclass, IDLitReader. We specify alist of
accepted filename extensions (only ppm in this case) via the Extensions
argument, and set the FILETY PE keyword. We include a description of the
reader viathe DESCRIPTION keyword. Finally, we usethe_EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
Exanpl eReader Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method

Thefile reader class Cleanup method handles any cleanup required by the file reader
object, and should do the following:
« destroy any pointers or objects created by the file reader

e cal the superclass Cleanup method

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 239

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file reader classis based on the IDLitReader class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See “IDLitReader::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method
PRO Exanpl eReader: : Cl eanup

; Clean up supercl ass
sel f->] DLi t Reader: : Cl eanup

END
Discussion

Since our file reader object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

Thefile reader class GetProperty method retrieves property values from the file
reader object instance or from instance data of other associated objects. It should
retrieve the requested property value, either from the file reader object’s instance data
or by calling another class' GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must belisted as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

iTool Developer’s Guide Creating a New File Reader

240 Chapter 9: Creating a File Reader

See “IDLitReader::GetProperty” in the IDL Reference Guide manual for additional
details.

Example GetProperty Method
PRO Exanpl eReader:: Get Property, _REF_EXTRA = _extra

| F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->| DLi t Reader:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file reader. Since the file reader we are creating has
no properties of its own, there are no keywords explicitly defined. The keyword
inheritance mechanism allows properties to be retrieved from the Exanpl eReader
class superclasses without knowing the names of the properties.

Since our Exanpl eReader class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in all of the keywords stored inthe _ext r a
structure.

Creating a SetProperty Method

Thefile reader SetProperty method stores property valuesin the file reader object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class
SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

See “IDLitReader::SetProperty” in the IDL Reference Guide manual for additional
details.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 241

Example SetProperty Method
PRO Exanpl eReader:: Set Property, _REF_EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
sel f->1 DLitReader:: SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file reader we are
creating has no properties of its own, no keywords are explicitly defined. The
keyword inheritance mechanism allows properties to be set on the Exanpl eReader
class superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass SetProperty method, passing in al of the keywords stored in
the _ext ra structure.

Creating an IsA Method

Thefile reader I1SA method must accept a string containing the name of thefile to be
read asits only parameter, and must determine whether thefileis of the proper typeto
be read by your file reader. If the fileis of the correct type, the ISA method must
return 1; if thefileis not of the correct type, the ISA method should display an error
message and return 0.

See“IDLitReader::IsA” in the IDL Reference Guide manual for additional details.
Example IsA Method
FUNCTI ON Exanpl eReader: : 1 sA, strFil enanme

i Dot = STRPOS(strFilename, '.', /REVERSE_SEARCH)

IF (iDot GI 0) THEN BEG N
fileSuffix = STRUPCASE(STRM D(strFil ename, iDot + 1))
| F (STRUPCASE(fil eSuffix) EQ'PPM) THEN RETURN, 1

ENDI F

sel f->|I DLi t| Messagi ng: : Error Message, $

["The specified file is not a PPMfile."], $
SEVERITY = 0, TITLE="Wong File Type"

iTool Developer’s Guide Creating a New File Reader

242 Chapter 9: Creating a File Reader

RETURN, O

END

Discussion

Note
Our example IsA method will simply check the filename for the presence of the
proper filename extension. A more sophisticated I1SA method would actually inspect
the contents of the specified file.

The IsA method accepts a string that contains a file name. Using the supplied file
name, we first search backwards from the end of the name until we locate a dot
character. If the filename contains a dot, we extract the string that follows the dot and
convert it to upper case. If the extracted string is' PPM , we return success, if the
extracted string isnot ' PPM or if thereis no dot in the file name, we issue an error
using the IDLitIMessaging::ErrorM essage method and return failure.

Creating a GetData Method

Thefile reader GetData method does the work of the file reader, first creating an IDL
variable or variables to contain the data read from the file, then placing the datainto
an iTool data object. If this processis successful, the GetData method must place the
created data object in the variable supplied as the method’s only argument and return
1 for success. If the processis not successful, the GetData method must return 0.

See“|IDLitReader::GetData” in the IDL Reference Guide manual for additional
details.

Example GetData Method
FUNCTI ON Exanpl eReader: : Get Dat a, ol nageDat a

; Get the nanme of the file currently associated with the reader.
filename = sel f->GetFil enane()

Read the file.
READ PPM fil ename, inmage

Store image data in Inage Data object.
ol mageData = OBJ_NEW' | DLi t Dat al DLI mage', $
NAME = FI LE_BASENAME(fi | eNane))

| F OBJ_VALI D(ol mageData) THEN BEG N

RETURN, ol nageDat a- >Set Dat a(i nage, ' | magePi xel s', /NO_COPY)
ENDI F

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 243

RETURN, O

END
Discussion

The GetData method accepts a single argument, which is a named variable that will
contain the data object. Our GetData method's first step is to retrieve the file name of
the file on which the method is being called using the GetFilename method. Since our
examplefile reader reads datafrom PPM files, the file name is then passed to the IDL
READ_PPM procedure. An IDLitDatalmage object that will hold the image dataiis
created in the named variable specified by the argument to the GetData method
(olmageData, in this case); the NAME property set to the filename of the original
datafile. We check to ensure that the ol mageData object was created successfully and
add the image data returned by the READ_PPM procedure using the
IDLitData::SetData method. Note the use of the NO_COPY keyword to prevent
making copies of the image data array, which could be quite large. Finally, we return
the value returned by the SetData method (1 for success, O for failure), or we return 0
if olmageDatais not avalid object.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 23 of the Building IDL Applications manual.

Subclassing from the IDLitReader Class

The IDLitReader classisthe base classfor all iTool file readers. In amost all cases,
new file readers will be subclassed either from the IDLitReader class or from aclass
that is asubclass of IDLitReader.

See “|IDLitReader” in the IDL Reference Guide manual for details on the methods
and properties available to classes that subclass from IDLitReader.

iTool Developer’s Guide Creating a New File Reader

244 Chapter 9: Creating a File Reader

Example Class Structure Definition

The following is the class structure definition for the Exanpl eReader file reader
class. This procedure should be the last procedure in afile named
exanpl er eader __defi ne. pro.

PRO Exanpl eReader __Defi ne

struct = { Exanpl eReader, $
| NHERI TS | DLi t Reader $

}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization's class name — in this case,
Exanpl eReader.

Like many iTool file reader classes, Exanpl eReader is created as a subclass of the
IDLitReader class. File reader classesthat subclass from IDLitReader classinherit all
of the standard iTool file reader features, as described in “ Subclassing from the
IDLitReader Class’ on page 243.

The ExampleReader class has no instance data of its own. For a more complex
example, see “Example: TIFF File Reader” on page 248.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 245

Registering a File Reader

Before afile reader can be used by an iTool to read in afile, the file reader’s class
definition must be registered as being available to the iTool. Registering afile reader
with the iTool links the class definition file that contains the actual IDL code that
defines the file reader with asimple string that names the reader. Code that calls afile
reader in an iTool uses the name string to specify which reader should be created.

Using IDLitTool::RegisterFileReader

In most cases, you will register afile reader with the iTool intheiTool’s class Init
method. Registration ensures that the file reader is available when the iTool attempts
touseittoread afile. (See“Creating aNew iTool Class’ on page 85 for detailson the
iTool class Init method.)

To register afile reader, call the IDLitTool::RegisterFileReader method:

sel f- >Regi st er Fi | eReader, Reader_Type, Reader Type_d ass_Nane, $
I CON = icon
where Reader_Type is the string you will use when referring to the file reader,
ReaderType Class Nameis a string that specifies the name of the classfile that
contains the file reader’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
Thefile Reader Type_Cl ass_Nane__defi ne. pr o must exist somewherein
IDL’s path for the file reader to be successfully registered.

See“IDLitTool::RegisterFileReader” in the IDL Reference Guide manual for details.
Specifying Useful Properties

You can set any property of the IDLitReader and IDLitComponent classes when
registering afile reader. The following properties may be of particular interest:

ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps’ on page 43 for details on where bitmap icon files are
located.

iTool Developer’s Guide Registering a File Reader

246 Chapter 9: Creating a File Reader

Unregistering a File Reader

If you are creating anew iTool from an existing iTool class, you may want to remove
afilereader registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers afile reader you don’t want included in your iTool. Rather than recreating
theiTool classto removethefile reader, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted file
reader.

Unregister afile reader by calling the IDLitTool::UnregisterFileReader method in the
Init method of your iTool class:

sel f->Unregi sterFil eReader, identifier
where identifier isthe string name used when registering the file reader.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like the a standard tool, with the exception that it would not read PNG files, you
could include the following method call in your iTool’s Init method:

sel f->Unregi sterFil eReader, 'PNG File Reader'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileReader
method, you can inspect the classfile that registers the file reader (if the file reader is
registered by a user-created class), or use the Findl dentifiers method of the IDLitTool
object to generate alist of registered file readers. (Standard i Tool file readers are pre-
registered within the iTool framework.)

If the file reader is registered in a user-created class, you could inspect the class
definition fileto find acall to the RegisterFileReader method, which looks something
likethis:

sel f->Regi sterFi | eReader, 'PNG File Reader', 'IDLitReadPNG

The first argument to the RegisterFileReader method (' PNG Fi | e Reader') isthe
string name of the file reader.

Alternatively, to generate alist of relativeidentifersfor al file readers registered with
the current tool, use the following statements:

Unregistering a File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 247

voi d = | TGETCURRENT(TOOL=0Tool)
frlist = oTool ->Fi ndldentifiers(/Fl LE READERS)
FORi = 0, N ELEMENTS(frlist)-1 DO PRINT, $
STRM D(frlist[i], STRPOS(frlist[i], '/', /REVERSE_SEARCH) +1)

See“IDLitTool::Findldentifiers’ in the IDL Reference Guide manual for details.

iTool Developer’s Guide Unregistering a File Reader

248 Chapter 9: Creating a File Reader

Example: TIFF File Reader

This example creates afile reader to read TIFF format files.

Note
The code for this example file reader isincluded in thefile
exanpl el _readtiff__define. prointheexanpl es/doc/itools
subdirectory of the IDL distribution. Enter

exanpl elt ool
at the IDL prompt to create an instance of aniTool that registers this file reader, or
.conpil e exanplel readtiff

to openthe. pro fileinthe IDL editor.

Note
The standard TIFF file reader included with the iTools contains additional features
not included in this example. In most cases, if afile reader isincluded in the
standard iTool distribution, there is no need to create your own reader for files of
the same type.

Class Definition File

The class definition for exanpl el _readti ff consists of an Init method, an 1A
method, a GetData method, GetProperty and SetProperty methods, and a class
structure definition routine. Aswith all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pr o appended).

Init Method
FUNCTI ON exanpl el_readtiff::1nit, _REF_EXTRA = _extra

Call the superclass Init nethod
IF (self->IDLitReader::Init(["tiff", "tif"],$
FILETYPE="TIFF", NAME="Tiff Files", $
DESCRI PTION="TIFF File format", $
_EXTRA = _extra) NE 1) THEN $
RETURN, O

Example: TIFF File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 249

Initialize the instance data field
self. _index = 0

Regi ster the index property
sel f->Regi sterProperty, '|IMAGE | NDEX , /INTEGER $
Description='"Index of the image to read fromthe TIFF file.'

RETURN, 1

END
Discussion

Thefirstitemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name examplel readtiff. The
_REF_EXTRA keyword inheritance mechanism allows any keywords specified in a
call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitReader class; this provides uswith all of the standard iTool file reader
functionality automatically. Any “extra’” keywords specified in the call to our Init
method are passed to the IDLitReader::Init method via the keyword inheritance
mechanism.

We specify alist of accepted filename extensions(ti ff andti f, inthiscase) viathe
Extensions argument, and set the FILETY PE keyword. We specify avalue for the
NAME property of the reader object (thisis displayed in the system preferences
dialog) and include a description of the reader viathe DESCRIPTION keyword.
Finally, we usethe EXTRA keyword inheritance mechanism to pass through any
keywords provided when the Init method is called.

Our TIFF reader object has asingleinstance datafield: _index, which isused to store
theindex number of the image to read from amulti-image TIFF file. Weinitialize this
instance data field to 0, and register the IMAGE_INDEX property to provide access
to thisfield viathe property sheet interface.

Finally, we return the value 1 to indicate successful initialization.
IsA Method
FUNCTI ON exanpl el_readtiff::lsa, strFilename
RETURN, QUERY_TI FF(strFil enane);

END

iTool Developer’s Guide Example: TIFF File Reader

250

Chapter 9: Creating a File Reader

Discussion

The IsA method for our TIFF file reader is simple: we use the IDL QUERY _TIFF
function to determine whether the specified fileisa TIFF file, returning the function’s
return value.

GetData Method

FUNCTI ON exanpl el_readtiff:: GetData, ol mageData

filename = sel f->CetFil enane()

IF (QUERY_TIFF(filenane, finfo, IMAGE INDEX = self. _index) EQO0) $
THEN RETURN, O

IF (flnfo.has_palette) THEN BEG N
i mmge = READ TI FF(fil ename, pal Red, pal Green, pal Blue, $
I MAGE_| NDEX = sel f. _index)
ELSE
i mge = READ_TI FF(fil ename, | MAGE_| NDEX = sel f._i ndex)
ENDI F

; Store image data in Inage Data object.
ol mageData = OBJ_NEW' | DLi t Dat al mage', $
NAME = FI LE_BASENAME(fi | eNane))

result = ol mageDat a- >Set Dat a(i nage, '|mage', /NO_COPY)

IF (result EQO) THEN $
RETURN, O

; Store palette data in |Image Data object.
IF (fInfo.has_palette) THEN $
result = ol mageDat a- >Set Dat a(TRANSPOSE([[pal Red], $
[pal Geen], [palBlue]]), 'Palette')

IF finfo.numimges GI' 1 THEN $
sel f->I DLi t | Messagi ng: : St at usMessage, $
'Read channel ' + strtrim(self._index, 2)

RETURN, result

END
Discussion

The GetData method for our TIFF file reader begins by retrieving the name of thefile
associated with the reader object. We then use the IDL QUERY _TIFF function to
check whether the image specified by the value of the IMAGE_INDEX property

Example: TIFF File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 251

(stored inthe _i ndex instance data field) exists, returning O for failureif the
specified image does not exist.

QUERY _TIFF also returns a structure containing information about the image; we
use this structure to determine whether the image has a palette. We use the presence
of a palette to choose the correct call to the READ_TIFF function, which places the
image datain a set of local variables.

Next, we construct an IDLitDatal mage object to store the image data, using the base
name of the image file for the object’s NAME property. We use the SetData method
to place the image datainto the newly created image data object, specifying the string
"I mage' asthedataobject’sidentifier. A check of the return value from the SetData
method allows us to return O from our GetData method if we are unable to store the
image data in the image object for any reason.

If the image includes pal ette data, we store the array of red, green, and blue values
using the SetData method, specifying' Pal ett e' astheidentifier. The palette
variables returned by READ_TIFF represent image planes; since the IDLitVisimage
visualization type that we will use to display the image expects data interleaved by
pixel, we use the TRANSPOSE function to convert the palette data into the correct
format.

Finally, we use the StatusMessage method of the IDLitIMessaging class to report to
the user which image was retrieved from the TIFF file. The message is displayed in
the status area of the iTool window.

GetProperty Method

PRO exanpl el _readtiff::GetProperty, | MAGE | NDEX = i mage_i ndex, $
REF EXTRA = _extra

| F (ARG _PRESENT(i mage_i ndex)) THEN $
i mge_i ndex = sel f._i ndex

I F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->1DLitReader:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the GetProperty method,
itsvalueisretrieved from the _i ndex instance datafield. Any other properties
included in the method call are passed to the superclass’ GetProperty method.

iTool Developer’s Guide Example: TIFF File Reader

252 Chapter 9: Creating a File Reader

SetProperty Method

PRO exanpl el_readtiff::SetProperty, | MAGE | NDEX = i mage_i ndex, $
REF EXTRA = _extra

I F (N_ELEMENTS(i mage_i ndex) GI 0) THEN $
sel f. _index = image_i ndex

I F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->1DLitReader:: Set Property, _EXTRA = _extra

END
Discussion

The SetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the SetProperty method,
itsvalueisplaced inthe _i ndex instance datafield. Any other propertiesincluded in
the method call are passed to the superclass' SetProperty method.

Class Definition

PRO exanpl el _readtiff__Define

struct = {exanplel readtiff, $
i nherits IDLitReader, $
_index : O $
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name exanpl el_readti f f, specifying that the structure inherits from the
IDLitReader class. The structure has a single instance data field named _i ndex,
which we specify as an integer value.

Example: TIFF File Reader iTool Developer’s Guide

Chapter 10:

Creating a File Writer

This chapter describes the process of creating an iTool file writer.

Overviewcoviiiiinnannnn. 254 RegisteringaFileWriter 269
Predefined iTool File Writers 255 UnregisteringaFileWriter 270
Creating aNew FileWriter 258 Example: TIFF FileWriter 272

iTool Developer’s Guide 253

254

Chapter 10: Creating a File Writer

Overview

A filewriter isan iTool component object class that defines how data stored in the
iTool data manager can be exported to afile. File writers have mechanisms for
manipulating data stored in iTool data objects into the proper format for agiven file
type. Some examples of iTool file writers are:

the ASCII file writer, which usesthe IDL PRINTF procedure to write datato a
text file.

various image file writers, which allow the user to save datain JPEG, BMP,
PNG, and other well-defined image format files,

ageneric binary file writer, which uses the IDL WRITEU procedure to write
unformatted binary datato afile.

A number of standard file writers are predefined and included in the IDL iTools
package; if none of the predefined file writers suits your needs, you can create your
own file writer by subclassing either from the base IDLitWriter class on which all of
the predefined file writers are based, or from one of the predefined file writers.

The File Writer Creation Process

To create anew iTool file writer, you will do the following:

Choose aniTool filewriter class on which your new operation will be based. In
amost all cases, you will base your new operation on the IDLitWriter class,
which handles registration of standard file properties and provides standard
messaging features.

Provide methods that extract the image data from the data object and create a

fileusing IDL's output routines (PRINT, WRITE, or one of the IDL WRITE_*
routines).

This chapter describes the process of creating a new file writer based on the
IDLitWriter class.

Overview

iTool Developer’s Guide

Chapter 10: Creating a File Writer 255

Predefined iTool File Writers

TheiTool system distributed with IDL includes a number of predefined file writers.
You can include these file writersin an iTool directly by registering the class with
your iTool (as described in “ Registering a File Writer” on page 269). You can also
create a new file writer class based on one of the predefined classes.

IDLitWriteASCII

TheiTools ASCII file writer usesthe IDL PRINTF procedure to print stringsto afile.
Registered Properties

STRING_SEPARATOR — A string that is used to separate the values stored in the
ASCII file.

USE_DEFAULT_FORMAT — A boolean value that specifieswhether adefault format
string should be used.

STRING_FORMAT — A string specifying the format string to be used when writing
the data to the ASCI| file. See “Format Codes’ in Chapter 11, “Files and
Input/Output” in the Building IDL Applications manual for a discussion of format
codes.

Note
The format code should not include parentheses.

IDLitWriteBinary

TheiTools Binary file writer uses the IDL WRITEU procedure to write unformatted
binary datato afile.

Registered Properties

None
IDLitWriteBMP

TheiTools BMP file writer uses the IDL WRITE_BMP procedure to write an image
and its color table vectors to a Microsoft Windows Version 3 device independent

bitmap file (. brp).
Registered Properties
BIT_DEPTH — Bit depth at which to write the image.

iTool Developer’s Guide Predefined iTool File Writers

256 Chapter 10: Creating a File Writer

IDLitWriteEMF

TheiTools EMF file writer uses the iTools system clipboard to write an image and its
color table vectors to a Microsoft Windows Enhanced Metéfile (. endf).

Registered Properties

GRAPHICS_FORMAT — A integer that specifies whether graphics should be
rendered using bitmap (0) or vector (1) output.

IDLitWriteEPS

TheiTools EPS file writer uses the i Tools system clipboard to write an image and its
color table vectors to a Microsoft Windows Enhanced Metéfile (. ent).

Registered Properties

COLOR_MODEL — An integer that specifies whether graphics should be rendered
using the RGB (0) or CMYK (1) PostScript Output Color Model.

GRAPHICS_FORMAT — An integer that specifies whether graphics should be
rendered using bitmap (0) or vector (1) output.

IDLitWritelSV

TheiTools ISV filewriter saves the current iTool state, including datain the data
manager, visualizations, annotations, and operation property settingsto afilewith the
extension . i sv. ISV files can be restored by launching an iTool and selecting thefile
using the File —» Open menu item.

Registered Properties

None
IDLitWriteJPEG

TheiTools JPEG file writer usesthe IDL WRITE_JPEG procedure to write
compressed images to files. JPEG (Joint Photographic Experts Group) isa
standardized compression method for full-color and gray-scale images.

Registered Properties

GRAYSCALE — A boolean value that specifies whether the image should be written
as TrueColor or Grayscale

QUALITY — Aninteger specifying the quality index, in the range of O (terrible) to
100 (excellent) for the JPEG file. The default value is 75, which corresponds to very

Predefined iTool File Writers iTool Developer’s Guide

Chapter 10: Creating a File Writer 257

good quality. Lower values of QUALITY produce higher compression ratios and
smaller files.

IDLitWriteJPEG2000

TheiTools JPEG2000 file writer usesthe IDL WRITE_JPEG2000 procedure to write
compressed images to files. JPEG 2000 is a wavel et-based compression method for
full-color and gray-scale images.

Registered Properties
N_LAYERS — An integer specifying the number of quality layers to include.
N_LEVELS — An integer specifying the number of wavelet decomposition levels.

REVERSIBLE — A boolean value that specifies whether to use reversible (lossless)
compression.

IDLitWritePICT

TheiTools PICT file writer usesthe IDL WRITE_PICT procedure to write an image
and its color table vectorsto aPICT (version 2) format imagefile. The PICT format is
used by Apple Macintosh computers.

Registered Properties

None
IDLitWritePNG

TheiTools PNG file writer usesthe IDL WRITE_PNG procedure to write an image
to a Portable Network Graphics (PNG) file. The datain thefileis stored using
lossless compression with either 8 or 16 data bits per channel, based on theinput IDL
variable type.

Registered Properties
BIT_DEPTH — Bit depth at which to write the image.
IDLitWriteTIFF
TheiTools TIFF filewriter usesthe IDL WRITE_TIFF procedure to write TIFF files.
Registered Properties

BIT_DEPTH — Bit depth at which to write the image.
COMPRESSION — An integer specifying the type of compression to use.

iTool Developer’s Guide Predefined iTool File Writers

258 Chapter 10: Creating a File Writer

Creating a New File Writer

The process of creating an visualization typeis outlined in the following sections:
e “Creating an Init Method” on page 258
e “Creating a Cleanup Method” on page 262
e “Creating a GetProperty Method” on page 263
e “Creating a SetProperty Method” on page 264
e “Creating a SetData Method” on page 265
e “Creating the Class Structure Definition” on page 267

Creating an Init Method

Thefile writer class Init method handles any initialization required by the file writer
object, and should do the following:

« define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

e cal the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

* register any properties of your file writer, and set property attributes as
necessary

e perform other initialization steps as necessary

« returnthevaue 1if theinitialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’'s keyword inheritance mechanism. The
Init method for afile writer generally looks something like this:

FUNCTI ON MyWiter::Init, MYKEYWORDL = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF EXTRA = _extra

where MyWriter is the name of your file writer class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 259

Note
Always use keyword inheritance (the_ REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See“ Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

Thefile writer class Init method should call the Init method of any required
superclass. For example, if your file writer is based on an existing file writer class,
you would call that class' Init method:

sel f->SomeFil eWiterdass::Init(_EXTRA = _extra)

where SomeFileWriterClass is the class definition file for the file writer on which
your new file writer is based.

Note
Your file writer class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is agood ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
O:

IF (self->SoneFileWiterdass::Init(_EXTRA = _extra) EQO) THEN $
RETURN, O

This convention isused in al file writer classes included with IDL. RSI strongly
suggests that you include similar checksin your own class definition files.

Keywords to the Init Method

Properties of the file writer class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitWriter class, IDLitComponent class, and
IDLitIMessaging class are available to any file writer class. See “IDLitReader
Properties’, “IDLitComponent Properties’, and “IDLitIMessaging Properties’ in the
IDL Reference Guide manual.

iTool Developer’s Guide Creating a New File Writer

260

Chapter 10: Creating a File Writer

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. (See “ Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new file writer class from any existing file writer class, in
many cases, file writer classes you create will be subclassed directly from the base
class IDLitWriter:

IF (self->IDLitWiter::Init(Extensions, TYPES = types, $
_EXTRA = _extra) EQO0) $
THEN RETURN, 0
where Extensionsis astring or array of strings specifying the filename extensions
readable by your file writer and typesis astring or array of strings specifying the
iTool data types for which thiswriter is available. (See “iTool Data Types’ on
page 50 for details on iTool datatypes.)

Note
The value of the Extensions argument is used only to display the proper filename
filter when aFile Save dialog is displayed — it is not a check for the proper filetype.

The IDLIitWriter class provides the base i Tool file writer functionality used in the
tools created by RSI. See “ Subclassing from the IDLitWriter Class’ on page 268 for
details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file writer classes that
subclass from your file writer class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File writer objects can register properties with the iTool. Registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “Properties of the iTools System” on page 80), and can be modified interactively
by users. The iTool property interface is described in detail in Chapter 4, “Property
Management”.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 261

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

sel f - >Regi sterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 70 for details.

Note
A file writer need not register any properties at al, if the write operation issimple.
Many of the standard iTool image file writer work without registering any
properties.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your file writer
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

sel f->Set PropertyAttribute, ldentifier

where ldentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 74 for additional details.

Passing Through Caller-Supplied Property Settings

If you haveincluded the REF EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. One of the things this
allowsyou to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

I F (N_ELEMENTS(_extra) GI 0) THEN $
sel f->M/Witer::SetProperty, _EXTRA = _extra

where MyWriter is the name of your file writer class. Thisline has the effect of
passing any “extra’ keyword values to your file writer class' SetProperty method,
where they can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “Creating a SetProperty Method” on
page 264 for details.

iTool Developer’s Guide Creating a New File Writer

262 Chapter 10: Creating a File Writer

Example Init Method
FUNCTI ON Exanpl eWiter::lnit, _REF EXTRA = _extra

IF (self->IDLitWiter::Init('ppm, TYPE='IDLIMAGE , $
NAVE=' Portabl e Pixmap (PPM File', $
DESCRI PTION="PPM File Witer", $
_EXTRA = _extra) EQO) THEN $
RETURN, O

RETURN, 1

END
Discussion

The Exanpl eW i t er classisbased on the IDLitWriter class (discussed in
“Subclassing from the IDLitWriter Class’ on page 268). As aresult, al of the
standard features of aniTool file writer class are already present. We don’'t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eW i t er Init method does the following things:

1. Cadlsthelnit method of the superclass, IDLitWriter. We specify alist of
accepted filename extensions (only ppm in this case) via the Extensions
argument, and set the TY PES keyword. We include a description of the writer
viathe DESCRIPTION keyword. Finally, we usethe EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
Exanpl eWi t er Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method
Thefile writer class Cleanup method handles any cleanup required by the file writer
object, and should do the following:
e destroy any pointers or objects created by the file writer
e cal the superclass Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file writer classis based on the IDLitWriter class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 263

always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See“IDLitWriter::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method
PRO Exanpl eWiter::d eanup

; Clean up supercl ass
self->IDLitWiter::C eanup

END
Discussion

Since our file writer object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

Thefilewriter class GetProperty method retrieves property values from the file writer
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the file writer object’s instance data or by
calling another class' GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must belisted as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard iTool image file writers work without registering any
properties.

See " IDLitWriter::GetProperty” in the IDL Reference Guide manual for additional
details.

iTool Developer’s Guide Creating a New File Writer

264 Chapter 10: Creating a File Writer

Example GetProperty Method
PRO Exanpl eWiter:: GetProperty, _REF_EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
self->IDLitWiter::GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file writer. Since the file writer we are creating has
no properties of its own, there are no keywords explicitly defined. Note the use of the
keyword inheritance mechanism to allow usto get properties from the

Exanpl eWi t er class superclasses without knowing the names of the properties.

Since our Exanpl eW i t er class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in al of the keywords stored inthe _extr a
structure.

Creating a SetProperty Method

Thefile writer SetProperty method stores property values in the file writer object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class
SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard iTool image file writer work without registering any
properties.

See “IDLitWriter::SetProperty” in the IDL Reference Guide manual for additional
details.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 265

Example SetProperty Method
PRO Exanpl eWiter::SetProperty, _REF_EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
self->IDLitWiter::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file writer we are
creating has no properties of its own, there are no keywords explicitly defined. Note
the use of the keyword inheritance mechanism to allow usto set properties from the
Exanpl eWi t er class superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass SetProperty method, passing in al of the keywords stored in
the _ext ra structure.

Creating a SetData Method

Thefile writer SetData method does the work of the file writer, extracting data from
the selected i Tool data object and writing the data to a file using some method. If the
process is successful, the SetData method must return 1 for success.

In our example, we write the selected data to a Portable Pixmap (PPM) file. Asa
result, we do some additional checking to ensure that the data that the user has
selected can be displayed as an image.

See “IDLitWriter::SetData” in the IDL Reference Guide manual for additional
details.
Example SetData Method
FUNCTI ON Exanpl eWiter:: Set Data, ol nageData

Pronpt user for a file in which to save the data
strFil ename = self->GetFil enane()
IF (strFilenane EQ'') THEN $

RETURN, 0 ; failure

; Check validity of the input data object

IF (~ OBJ_VALID(ol mageData)) THEN BEG N
sel f->ErrorMessage, ['Invalid i mage data object'], $

iTool Developer’s Guide Creating a New File Writer

266 Chapter 10: Creating a File Writer

TITLE = '"Error', SEVERITY = 2
RETURN, O ; failure
ENDI F

; Check the i Tool data type of the selected data object.
; If the data is not of a type that can be witten to an
; image file, display an error message.
oDat a = ol mageDat a- >Get By Type("I DLI MAGE", COUNT = count)
IF (count EQ 0) THEN $; no image, image pixels?
oData = ol mageDat a- >Get By Type(" | DLI MAGEPI XELS", $
COUNT = count)
IF (count EQ 0) THEN $; no inmage, array 2d?
oDat a = ol mageDat a- >Get By Type(" | DLARRAY2D', COUNT = count)
I F (count EQ 0) THEN BEGQ N
sel f->Error Message, $
["Invalid data provided to file witer."], $
TITLE="Error", SEVERITY = 2
RETURN, 0 ; failure
END

; Turn a 1-D object array into a scal ar object.
oData = oDat a[0]

; Determi ne whether the data is an inage.
i slmage = OBJ_| SA(oData, "IDLitDatal DLI nage")

; If data is an inmage, get image pixels, otherw se
; turn data into an i mage.
IF (islmage NE 0) THEN BEG N

result = oData->CetData(imge, 'ImagePixels')
ENDI F ELSE BEGA N

result = oDat a->Get Dat a(i mage)
ENDEL SE

; Check the result of the GetData method.
IF (result EQ 0) THEN BEQ N
sel f->ErrorMessage, ['Error retrieving image data'], $
TITLE = "Error', SEVERITY = 2
RETURN, 0 ; failure
ENDI F

; Get nunber of dinensions of inage array.
ndi m = Sl ZE(i mage, /N_DI MENSI ONS)

; Wite to a PPMfile. Use REVERSE to make inmage appear
; With correct orientation.
WRI TE_PPM strFil ename, REVERSE(image, ndin)

: Return 1 for success.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 267

RETURN, 1

END
Discussion

The SetData method accepts an IDLitData abject (olmageData) as its input
parameter. Before processing the input data, the method prompts the user for afilein
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing afilename, the method proceeds to check the input data object. First it
checks to make sure that the input object isvalid. Then it attempts to retrieve data of
an appropriate i Tool datatype from the data object; in this example, the method tries
to extract an data of one of the following types using the GetBy Type method of the
IDLitData class:

 |IDLIMAGE
 |IDLIMAGEPIXELS
« IDLARRAY2D

If no data of any of these types is found, the method displays an error message and
exits.

Once the method has obtained an appropriate data object, it checks to determine
whether the data object isan IDLitDatal DL Image object; if so, it attempts to retrieve
the image pixelsfrom the data object; otherwiseit simply retrievesthe dataarray. The
data retrieved by the GetData method is stored in the variable i mage. The method
then checks the return value from the GetData method to determine whether the
returned valueisvalid.

Using the valid image data, the method determines the number of dimensions and
then uses the WRITE_PPM procedure to create an image file. The image data must
be processed by the REVERSE function in order to make it appear in the output file
with the correct orientation.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Cbj ect Cl ass__def i ne (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and

iTool Developer’s Guide Creating a New File Writer

268 Chapter 10: Creating a File Writer

structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 23 of the Building IDL Applications manual.

Subclassing from the IDLitWriter Class

The IDLitWriter classisthe base class for al iTool file writers. In amost all cases,
new file writers will be subclassed either from the IDLitWriter class or from a class
that is asubclass of IDLitWriter.

See “IDLitWriter” in the IDL Reference Guide manual for details on the methods
properties available to classes that subclass from IDLitWriter.

Example Class Structure Definition

Thefollowing is the class structure definition for the Exanpl eW i t er filewriter
class. This procedure should be the last procedure in afile named
exanpl ewriter__define.pro.

PRO Exanpl eWiter__Define

struct = { ExanpleWiter, $
INHERI TS IDLitWiter $
}

END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
Exanpl eWiter.

Like many iTool file writer classes, Exanpl eW i t er is created as a subclass of the
IDLitWriter class. File writer classes that subclass from the IDLitWriter class inherit
all of the standard iTool file writer features, as described in “ Subclassing from the
IDLitWriter Class’ on page 268.

The ExampleWriter class has no instance data of its own. For a more complex
example, see “Example: TIFF File Writer” on page 272.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 269

Registering a File Writer

Before afile writer can be used by aniTool to write afile, the file writer's class
definition must be registered as being available to the iTool. Registering afile writer
with the iTool links the class definition file that contains the actual IDL code that
defines the file writer with a simple string that names the writer. Code that calls afile
writer in an iTool uses the name string to specify which writer should be created.

Using IDLitTool::RegisterFileWriter

In most cases, you will register afile writer with the iTool in theiTool’s class Init
method. Registration ensures that the file writer is available when the i Tool attempts
to useit to write afile. (See” Creating a New iTool Class’ on page 85 for details on
theiTool class Init method.)

To register afile writer, call the IDLitTool::RegisterFileWriter method:
self->RegisterFileWiter, Witer_Type, WiterType_d ass_Nane, $
I CON = icon

where Writer_Type is the string you will use when referring to the file writer,
WriterType_Class Name is a string that specifies the name of the class file that
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
ThefileWiter Type_Cl ass_Nane__defi ne. pro must exist somewherein

IDL’s path for the file writer to be successfully registered.

See“IDLitTool::RegisterFileWriter” in the IDL Reference Guide manual for details.
Specifying Useful Properties

You can set any property of the IDLitWriter and | DLitComponent classes when
registering afile writer. The following properties may be of particular interest:

ICON

Set this property to astring value giving the name of an icon to be associated with this
object. Typically, this property is the name of abitmap file to be used when
displaying the object in atree view. See “Icon Bitmaps’ on page 43 for details on
where bitmap icon files are located.

iTool Developer’s Guide Registering a File Writer

270 Chapter 10: Creating a File Writer

Unregistering a File Writer

If you are creating anew iTool from an existing iTool class, you may want to remove
afilewriter registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers afile writer you don’t want included in your iTool. Rather than recreating
theiTool classto remove thefile writer, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted file
writer.

Unregister afile writer by calling the IDLitTool::UnregisterFileWriter method in the
Init method of your iTool class:

self->UnregisterFileWiter, identifier
where identifier isthe string name used when registering the file writer.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like a standard tool, with the exception that it would not export PNG files, you
could include the following method call in your iTool’s Init method:

self->UnregisterFileWiter, "PNG File Witer'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileWriter
method, you can inspect the classfile that registers the file writer (if the file writer is
registered by a user-created class), or use the Findl dentifiers method of the IDLitTool
object to generate alist of registered file writers. (Standard iTool file writers are pre-
registered within the iTool framework.)

If the file writer isregistered in a user-created class, you could inspect the class
definition file to find acall to the RegisterFileWriter method, which looks something
likethis:

self->RegisterFileWiter, '"PNG File Witer', 'IDLitReadPNG

Thefirst argument to the RegisterFileWriter method (' PNG File Witer')isthe
string name of the file writer.

Alternatively, to generate alist of relative identifiers for all file writers registered
with the current tool, use the following statements:

Unregistering a File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 271

voi d = | TGETCURRENT(TOOL=0Tool)
fwist = oTool ->Findldentifiers(/FILE WRl TERS)
FORi = 0, N ELEMENTS(fwWist)-1 DO PRINT, $
STRM D(fwist[i], STRPOS(fwlist[i], '/', /REVERSE_SEARCH) +1)

See“IDLitTool::Findldentifiers’ in the IDL Reference Guide manual for details.

iTool Developer’s Guide Unregistering a File Writer

272 Chapter 10: Creating a File Writer

Example: TIFF File Writer

This example creates afile writer to write TIFF format files.

Note
The code for this example file writer isincluded in thefile
exanplel witetiff__define.prointheexanpl es/doc/itools
subdirectory of the IDL distribution. Enter

exanpl elt ool
at the IDL prompt to create an instance of an iTool that registersthisfile writer, or
.conmpile exanplel witetiff

to openthe. pro fileinthe IDL editor.

Note
The standard TIFF file writer included with the iTools contains additional features
not included in this example. In most cases, if afile writer isincluded in the
standard i Tool distribution, thereis no need to create your own writer for files of the
same type.

Class Definition File

Theclassdefinitionfor exanpl el_writetiff consistsof anInit method, a SetData
method, and a class structure definition routine. As with all object class definition

files, the class structure definition routine isthe last routine in the file, and the fileis
given the same name as the class definition routine (with the suffix . pr o appended).

Init Method

FUNCTI ON exanpl el _witetiff::Init, _REF_EXTRA = _extra

IF (self->IDLitWiter::Init('tiff', $
TYPES=[' | DLI MAGE', 'IDLI MAGEPI XELS', '|IDLARRAY2D], $
NAVE="Tag Image File Format", $
DESCRI PTION="Tag Inmage File Format (TIFF)", $
_EXTRA = _extra) EQO) THEN $
RETURN, O

RETURN, 1

Example: TIFF File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 273

END
Discussion

Thefirstitem in our class definition fileisthe Init method. The Init method’sfunction
signature is defined first, using the class name examplel_writetiff. Note the use of the
_REF_EXTRA keyword inheritance mechanism; this allows any keywords specified
in acal to the Init method to be passed through to routines that are called within the
Init method even if we do not know the names of those keywords in advance.

Next, we cal the Init method of the superclass. In this case, we are creating asubclass
of the IDLitWriter class; this provides us with all of the standard i Tool file writer
functionality automatically. Any “extra” keywords specified in the call to our Init
method are passed to the IDLitWriter::Init method viathe keyword inheritance
mechanism.

We specify alist of accepted filename extensions (ti f f , in this case) viathe
Extensions argument, and set the TY PES keyword equal to theiTool datatype of data
that can be written using thisfile writer. (TheiTool data types specified by the

TY PES keyword must match the iTool datatype of the data selected in the i Tool
Export Wizard in order for the file writer to be available for selection.)

We specify avalue for the NAME property of the writer object (thisisdisplayed in
the system preferences dialog) and include a description of the writer viathe
DESCRIPTION keyword. Finally, we use the _EXTRA keyword inheritance
mechanism to pass through any keywords provided when the Init method is called.

Finally, we return the value 1 to indicate successful initialization.
SetData Method
FUNCTI ON exanpl el witetiff::SetData, ol nageData

; W need a filenane for the file we are about to write.
strFil ename = sel f->GetFil enanme()
IF (strFilename EQ'') THEN $

RETURN, O ; failure

Make sure that the object passed to this nethod is valid.
| F (~ OBJ_VALI D(ol mageData)) THEN BEG N
MESSAGE, 'Invalid image data object.', /CONTI NUE
RETURN, 0 ; failure
ENDI F

First, we look for sone inage data.
oData = (ol nageDat a- >Get By Type(' | DLI MAGEPI XELS'))[0]

iTool Developer’s Guide Example: TIFF File Writer

274

Chapter 10: Creating a File Writer

; If we did not get any inmage data, try retrieving a
; 2D array.
IF (~ OBJ_VALID(oData)) THEN BEG N
oData = (ol nageDat a- >Get By Type(' | DLARRAY2D))[0]
IF (~ OBJ_VALID(oData)) THEN RETURN, O
ENDI F

; If we got neither image data nor a 2D array,

; exit with a failure code.

| F (~ oData->GetData(image)) THEN BEG N
MESSACE, 'Error retrieving inage data.', /CONTI NUE
RETURN, 0 ; failure

ENDI F

; Next, try to retrieve a palette object fromthe selected
obj ect.
oPal ette = (ol mageDat a- >Get By Type(' | DLPALETTE')) [0]

; If we got a palette object, retrive the palette data
; and store the information in the variables red, green,
;and bl ue.
IF (OBJ_VALID(oPalette)) THEN BEGA N
success = oPal ette->Cet Dat a(pal ette)
I F (N_ELEMENTS(pal ette) GI 0) THEN BEG N
red = REFORM pal ette[0, *])
green = REFORM pal ette[1, *])
bl ue = REFORM pal ette[2, *])
ENDI F
ENDI F

; Retrieve the nunber of dinmensions in our inage.
ndi m = Sl ZE(i mage, /N_DI MENSI ONS)

Wite the file. The REVERSE ensures that other
; applications will read the image in right side up.
WRI TE_TI FF, strFilename, REVERSE(i mage, ndin), $
RED = red, GREEN = green, BLUE = bl ue

RETURN, 1 ; success

END
Discussion

The SetData method accepts an IDLitData object (olmageData) as its input
parameter. Before processing the input data, the method prompts the user for afilein
which to save the image, using the GetFilename method of the IDLitWriter object.

Example: TIFF File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 275

After securing afilename, the method proceeds to check the input data object. First it
checks to make sure that the input object isvalid. Then it attempts to retrieve a data
object of theiTool datatype | DLI MAGEPI XELS from the data object, using the
GetByType method. If thisfails, it attempts to retrieve a data object of theiTool data
type | DLARRAY2D from the data object, again using the GetByType method. If this
second attempt fails, we exit, returning O.

Next, we use the GetData method to retrieve the image data from the data object. The
method then checks the return value from the GetData method to determine whether
the returned value is valid, and exitsif it is not.

The method next attempts to retrieve a object of the datatype IDLPALETTE from
the input object. If a palette isretrieved, the palette data is reformed to suit the needs
of the WRITE_TIFF procedure.

Finally, the method uses the WRITE_TIFF procedure to create an imagefile. The
image data must be processed by the REVERSE function in order to make it appear
in the output file with the correct orientation.

Class Definition
PRO exanplel witetiff__Define

struct = {exanplel witetiff, $
inherits IDLitWiter $

}
END

Discussion

Our class definition routine is very simple. We create an IDL structure variable with
thenameexanpl el_writetiff,specifying that the structure inherits from the
IDLitWriter class. The object has no instance data, and thus no instance data fields.

iTool Developer’s Guide Example: TIFF File Writer

276 Chapter 10: Creating a File Writer

Example: TIFF File Writer iTool Developer’s Guide

Part Ill: Modifying
the 1ITool User
Interface

Chapter 11.:
I Tool User Interface
Architecture

This chapter provides an overview of theiTool user interface architecture.

Overviewcoviiiiinnannnn. 280 User Interface Objects 282

iTool Developer’s Guide 279

280

Chapter 11: iTool User Interface Architecture

Overview

Overview

TheiTool user interface architecture is designed to preserve the separation between
the functionality provided by an iTool application and the manner in which that
functionality is presented to the user. While the process of creating a user interface
for theiTool application iscomplex, theideaissimple: theiTool can choose from any
number of user interface styles that present information to the user in unique ways,
depending on the operating environment.

While theinitia release of the iTool component framework includes only one user
interface style, created from IDL’s graphical widget interface toolkit, the iTool
framework design allows for the creation of additional user interface styles. Creating
new interface elements, or even an entirely new user interface, does not require
aterations to the underlying iTool implementation.

Note
Inthefirst release of the IDL iTools system, the functionality necessary to create
entirely new user interface stylesis not fully defined. Future versions of the iTool
system will provide the capability to create additional user interface styles.

Working within an existing interface style, you can add several different types of user
interface elements to your iTools. In rough order of increasing complexity of
implementation, iTool user interface elements include:

« Simple additional interface elements such as custom messages that appear in
the iTool status area, informational dialogs, and simple yes-or-no type
interactive user dialogs. These items can be added to an iTool using built-in
methods of the IDLitIMessaging class. Built-in interface elements are
described in Chapter 12, “Using iTool User Interface Elements’.

e Modal dialogsthat alow the user to provide complex information before an
action is performed by theiTool. Dialog-based interface elements can be
simple, perhaps allowing the user to enter a single numerical value, or
complex, as shown by the iTool Curve Fitting operation’s parameter-
specification dialog. Dialog-based interfaces require the creation of a user
interface service, which can then call code that creates the appropriate dialog
interface for the platform and iTool interface style. User interface services are
described in Chapter 13, “Creating a User Interface Service'.

iTool Developer’s Guide

Chapter 11: iTool User Interface Architecture 281

e iTool panels, which are non-modal collections of interface elements that are
attached to the iTool visualization window. Panels are useful when complex
controls must always be visible alongside a visualization; the iVolume and
ilmage tools provide examples of a panel interface. Panel interfaces are
described in Chapter 14, “Creating a User Interface Panel”.

iTool Developer’s Guide Overview

282 Chapter 11: iTool User Interface Architecture

User Interface Objects

TheiTool user interface object is an instance of the class IDLitUl. The Ul object
provides away for theiTool to communicate with interface elements created using
the IDL widget toolkit. Asthe center of communication between the user interface
and the underlying i Tool functionality, the Ul object provides the following
functionality:

* Access to and communication with the underlying i Tool object.

* Registration and management of dialogs and other sub-elements of the user
interface that are used by the iTool to perform specific tasks.

e Registration of user interface elements that are part of the iTool display itself.

One of the key features of theiTool user interface is the ability to adapt to the
contents of the tool, sensitizing and desensitizing menu items or displaying dialogs or
user interface panels as necessary. The IDLitUI object makes this adaptability
possible while maintaining the slender link between tool functionality and user
interface. The following features of the IDLitUI object make these features possible;

GetTool Method

The IDLitUI::GetTool method provides the means to retrieve an object reference to
the underlying i Tool object from user interface code. Theretrieved reference can then
be used to access data stored in i Tool objects (property values, for example) and to
call other iTool object methods.

Ul Service Registration Methods

The IDLitUI::RegisterUl Service and IDLitUI::UnRegisterUl Service methods allow
user interface code to register (and unregister) user interface services as being
available for use by theiTool interface.

Note
User interface services are more normally registered by an iTool launch routine,
using the ITREGISTER procedure.

User interface services are discussed in detail in Chapter 13, “Creating a User
Interface Service”.

User Interface Objects iTool Developer’s Guide

Chapter 11: iTool User Interface Architecture 283

Widget Registration Methods

The IDLitUI::RegisterWidget and IDLitUI::UnRegisterWidget methods allow user
interface code to register (and unregister) widget callback routines as the target of
OnNotify messages. Registration allows the user interface to receive messages
generated by iTool components and to react accordingly.

Widget registration is discussed in detail in Chapter 14, “ Creating a User Interface
Panel”.

AddOnNotifyObserver Method

The IDLitUI::AddOnNotifyObserver method allows user interface code to register to
receive messages sent via calls to the OnNotify methods of iTool components. This
mechanism allows the user interface to change in response to changesin the
underlying iTool.

Use of the iTool messaging system is discussed in detail in Chapter 14, “Creating a
User Interface Panel”.

DoAction Method

The IDLitUI::DoAction method makes it possible for a user interface element to
launch execution of an operation within the underlying iTool.

Use of the DoAction method to initiate execution of operationsisdiscussed in
Chapter 13, “Creating a User Interface Service’.

iTool Developer’s Guide User Interface Objects

284 Chapter 11: iTool User Interface Architecture

User Interface Objects iTool Developer’s Guide

Chapter 12:

Using ITool User
Interface Elements

This chapter describes user interface elements that can be incorporated into an i Tool without the
need to write any user interface code.

Overviewcoiiiiiinannn. 286 Prompts............ ..o, 289
StatusMessagesSo i i 287 Informational Messages 291

iTool Developer’s Guide 285

286 Chapter 12: Using iTool User Interface Elements

Overview

The IDLitIMessaging class provides methods that allow you to accept and return
feedback viathe iTool interface without writing any interface code yourself. For
many applications, adding the ability to provide status information, prompt the user
for simple input, and display appropriate error messages to the standard i Tool
interface is sufficient; in these cases, no additional code is needed to create and
display user interfaces.

Note
The simple dialogs presented by the I DLitlMessaging methods are similar to those
displayed by the IDL DIALOG_MESSAGE function. Sincetheinitial iTools
release supports only one user interface style (built using the IDL widget interface
toolkit) it may be tempting to use DIALOG_MESSAGE rather than the methods
described in this chapter. Asthe iTools framework matures, however, additional
user interface styles may be created either by RSI or by third-party developers.
Using the built-in IDLitIMessaging methods will ensure that your i Tool
applications continue to function properly when other interface styles are available.

This chapter discusses the use of the basic user interface elements provided by the
IDLitIMessaging class. If your application requires a more complex interface, see
Chapter 13, “Creating a User Interface Service” or Chapter 14, “ Creating a User
Interface Panel”.

Overview iTool Developer’s Guide

Chapter 12: Using iTool User Interface Elements 287

Status Messages

Satus messages are simple text messages displayed in away that does not impede the
user’s operation of theiTool. In the standard i Tool user interface created using the

IDL widget toolkit, status messages are text strings displayed at the bottom of the
iTool window.

00 \/V\/\/\/V\,

-02
-04
-0' 6 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 50 100 150
] I >l
|Elic:k and move to translate, <Shift> constraing, or use amow keys P(: 117.6 ¥ -0.03153
i
Status area Probe status area

Figure 12-1: The status areas of a standard iTool.

The IDLitIMessaging class provides two methods that display status messages. See
“IDLitIMessaging” in the IDL Reference Guide manual for details.

StatusMessage

The IDLitIMessaging:: StatusM essage method displays a string value. In the standard
iTool interface created using the IDL widget toolkit, status messages appear in the
status area at the bottom left corner of the iTool window, as shown in Figure 12-1.

In the standard set of i Tools provided with IDL, the status areais used to display
status information for operations or informational messages pertaining to the
currently selected object or manipulator.

The following code places the text “My Status Message” in the status area:

sel f->St at usMessage, 'My Status Message'

ProbeStatusMessage

The IDLitIMessaging:: ProbeStatusM essage method displays a string value. In the
standard iTool interface created using the IDL widget toolkit, probe status messages
appear at the bottom right corner of the iTool window, as shown in Figure 12-1.

iTool Developer’s Guide Status Messages

288 Chapter 12: Using iTool User Interface Elements

In the standard set of i Tools provided with IDL, the probe status areais used to
display the position of the cursor within the iTool window.

The following code places the text “X: 300, Y:146” in the status area:
sel f - >Pr obeSt at usMessage, ' X: 300, YVY:146'

In most cases, the values displayed in the probe status area have some relationship to
the position of the cursor or to the action performed by the current manipulator.

Creating Additional Status Bar Segments

You can create additional named status bar segments using the RegisterStatusBar
method of the IDLitTool class. The text displayed in the newly created status bar
segment can then be modified using the IDLitlMessaging:: StatusM essage method
with the SEGMENT _IDENTIFIER keyword.

See IDLitIMessaging:: StatusM essage and “ I DLitTool:: Regi ster StatusBar Segment”
in the IDL Reference Guide manual for details.

Status Messages iTool Developer’s Guide

Chapter 12: Using iTool User Interface Elements 289

Prompts

Prompts solicit information from the user. Prompts are generally presented as modal
dialogs, meaning that the user must respond to the prompt before operation of the
iTool can continue.

Overwrite Yariable? E &llName the Creat... [E3
3 : Enter a string walue
COwerwrite Variable: Plob_¥7 —
My object

oK | Eancell

Figure 12-2: Yes/No and Text Prompt dialogs.

The IDLitIMessaging class provides two methods that prompt for user input:
PromptUserYesNo and PromptUserText. See “IDLitIMessaging” in the IDL
Reference Guide manual for additional details on these methods.

PromptUserYesNo

The IDLitIMessaging::PromptUserYesNo method displays a prompt string along
with Yes and No buttons. In the standard i Tool interface created using the IDL widget
toolkit, Yes/No prompts appear as modal dialogs as shown in Figure 12-2.

Note
The PromptUserYesNo function returns 1 if the dialog executed properly. You must
check the value stored in the variable specified as the Answer argument to
determine which button the user pressed.

The following code asks the user a Yes or No gquestion and performs some action if
the dialog returns properly and the value of the returned variable answer isequal to
1 (aswould be the case if the user clicked Yes):

status = sel f->Pronpt User YesNo(' Overwite Variable: Plot_Y?', $
answer, TITLE="Overwite Variable?')

IF (status NE 0 & answer EQ 1) THEN BEG N
; do sonething. ..
ENDI F

The value of the TITLE keyword is displayed in the title bar of the dialog box.

iTool Developer’s Guide Prompts

290

Prompts

Chapter 12: Using iTool User Interface Elements

PromptUserText

The IDLitIMessaging::PromptUserText method displays a prompt string and a text-
entry field along with OK and Cancel buttons. In the standard i Tool interface created
using the IDL widget toolkit, text prompts appear as modal dialogs as shown in
Figure 12-2.

Note
The PromptUserText function returns 1 if the user clicks the OK button, or O if the
user clicks the Cancel button.

The following code asks the user to enter atext string, which will be stored in the
variable st ri ngNane:

status = sel f->Pronpt Usertext (' Enter a string value', $
stringNane, TITLE = 'Nane the Created Object')

The value of the TITLE keyword is displayed in the title bar of the dialog box. The
variable st at us will contain a1l if the user clicks OK, or a0 if the user clicks
Cancel.

iTool Developer’s Guide

Chapter 12: Using iTool User Interface Elements 291

Informational Messages

Informational Messagesinform the user that some condition has occurred in theiTool
application. The condition may be an error, but it can also be any other occurrence of
which the user should be informed. Informational messages are presented as modal
dialogs, generally with asingle OK button that dismisses the dialog.

Export Complete []
@ The following wariables were exported:
Plat_t

Figure 12-3: An informational message dialog.

The IDLitIMessaging class provides the ErrorM essage method to display
informational messages of all sorts.

ErrorMessage

The IDLitIMessaging::ErrorMessage method displays an informational text message
to the user. In the standard i Tool interface created using the IDL widget toolkit,
informational messages appear as modal dialogs as shown in Figure 12-3.

Informational messages can use any of three severity codes, indicating to the user
whether the message is merely informational, is awarning, or reports a serious error.
While the severity setting does not ater the behavior of the dialog, which can only be
dismissed by the user, it can alter the appearance of the dialog. For example, the
dialog shown in Figure 12-3 has a severity setting of 0, or “Informational”.

The following code displays an informational message:

sel f->Error Message, [' The follow ng variables were exported:', $
"Plot_Y'], SEVERITY = 0, TITLE = ' Export Conpl ete'

The value of the TITLE keyword is displayed in the title bar of the dialog box.

In addition to the ErrorM essage methaod, the IDLitIMessaging class provides the
Signal Error method, which reports an error condition to the iTool system but which
does not display the message to the user. See“IDLitIMessaging” in the IDL
Reference Guide manual for details.

iTool Developer’s Guide Informational Messages

292 Chapter 12: Using iTool User Interface Elements

Informational Messages iTool Developer’s Guide

Chapter 13:

Creating a User
Interface Service

This chapter describes the process of creating a user interface service.

Overviewcoviiiiinnannnn. 294 RegisteringaUl Service 302
Predefined iTool Ul Services........... 295 Executing a User Interface Service 304
Creating aNew Ul Service 297 Example: Changing a Property Value ... 305

iTool Developer’s Guide 293

294 Chapter 13: Creating a User Interface Service

Overview

A Ul serviceisan iTool component object class that defines how and when a user
interface element is presented to an iTool user. Ul services provide away to separate
platform-independent i Tool functionality from platform-dependent user interface
code. When an iTool needs to display a graphical interface, it simply callsthe
appropriate Ul serviceto display the interface; the iTool itself does not need to know
anything at all about the platform on which it is running. Decisions about how to
display the desired interface are |eft to the Ul service, which can choose from any
number of options based on the platform and user interface style in use.

Note
Intheinitia iToolsrelease, only one user interface styleis supplied: the IDL widget
interface toolkit. Asthe iTools framework continues to grow, additional user
interface styles may be created either by RSI or by third-party developers.

Creating and Using a Ul Service

To create and use anew iTool Ul service, you will do the following:

e Createan IDL function that displaysthe user interface elements. See“ Creating
aNew Ul Service” on page 297 for details.

¢ Register the new Ul service with theiTools system. See “Registering a Ul
Service” on page 302 for details.

« Execute the Ul service from iTool code. See “Executing a User Interface
Service” on page 304 for details.

Overview iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 295

Predefined iTool Ul Services

TheiTool system distributed with IDL includes a number of predefined Ul services.
These Ul services are registered with the iTool system, which meansthat you can call
them from any operation, visualization, or other iTool component using the

DoUl Service method of the IDLitTool class.

The majority of the predefined Ul services provide interface elements that are
specific to the standard iTool implementation. In most cases, you do not need to call
these services directly; using the existing iTool operation or visualization code that
callsthe Ul serviceis sufficient. If you are creating anew Ul service, you may want
to inspect the code for some of the standard Ul services — they are located in the

l'i b/itool s/ui_w dgets subdirectory of the DL directory and have file names of
theformi dlitui*. pro.

Thefollowing Ul services are generally useful; you may wish to include callsto these
servicesin your own iTool operation or visualization code.

Hourglass Cursor Service

Displays the hourglass cursor. The hourglass cursor is displayed until processing
completes and anew IDL widget event is processed, at which time the previous
cursor is reinstated.

Registered Service Name
HourGlassCursor
Example

void = oTool - >DoUl Servi ce(' Hour d assCursor', self)

Operation Property Sheet Service

This serviceis designed to be called from within the DoExecuteUl method of an
iTool operation. It displays the property sheet for the operation, allowing the user to
set any operation properties before the operation is executed. The self argument isthe
IDLitOperation object. Thereturn valueis 1 (one) if the specified properties were set
as requested, or 0 (zero) otherwise.

Registered Service Name

Property Sheet

iTool Developer’s Guide Predefined iTool Ul Services

296 Chapter 13: Creating a User Interface Service

Example
RETURN, oTool - >DoUl Servi ce(' PropertySheet', self)

Operation Preview Service

This serviceis designed to be called from within the DoExecuteUl method of an
iTool operation that acts on atwo-dimensional array. It displaysthe property sheet for
the operation, allowing the user to set any operation properties before the operation is
executed, along with a preview window showing the result. The self argument is the
IDLitOperation object. Thereturn valueis 1 (one) if the specified properties were set
as requested, or 0 (zero) otherwise.

Note
The preview window displays a subset (a 128 by 128 element array) of the data
being operated on. When the preview is displayed, the Execute method of your
operation is called with this subset only. If your operation requires padding around
the edges or has a minimum data array size, your operation’s GetProperty method
must implement aMINIMUM_DIMENSIONS property that specifies the smallest
amount of datathat can be used by the operation.

See the unsharp masking operation in the standard i Tools distribution
(i b/itool s/ conponents/idlitopunsharpnmask__defi ne. pro) for an
example.

Registered Service Name
OperationPreview
Example
RETURN, oTool - >DoUl Servi ce(' Operati onPreview , self)

Predefined iTool Ul Services iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 297

Creating a New Ul Service

A user interface service isresponsible for creating a user interface element that is
displayed when aniTool user takes some action. A simple Ul service may do no more
than display the “hourglass’ cursor while an operation is being performed; more
complicated Ul services may be small applications unto themselves.

For simple operations the Ul service routine can contain everything necessary to
implement the Ul service. For more complex interfaces, however, it is often practical
to separate the actual user interface code (that is, the widget creation and event-
handling routines) from the logic of the Ul serviceitself. The latter is the strategy
used by many of the Ul services included with the standard i Tools.

The process of creating a user interface service is outlined in the following sections:
e “Creating the Ul Service Routine” on page 297
e “Creating Supporting User Interface Elements’ on page 300

Creating the Ul Service Routine

The user interface service routine performs the following tasks:

* Manages changes to any properties of the object on which the user interface
element was invoked.

* Managesthe display of the user interface element.

To accomplish these things, the Ul service routine needs a reference to the i Tool
component on which the service will act, and areferenceto the IDLitUI object
associated with the current iTool. As aresult, the user interface service routine has the
following signature:

FUNCTI ON Servi ceNane, oUl, oRequester

where ServiceName is the name of the function, oUl is an object reference to the
IDLitUI object associated with the iTool, and oRequester is an object reference to the
iTool component specified in the call to the DoUl Service method.

Note
ServiceName is not necessarily the same as the registered name of the service used
in the call to the DoUl Service method. The registered nameis defined by the call to
the ITREGISTER procedure. See “Registering a Ul Service” on page 302 for
details.

iTool Developer’s Guide Creating a New Ul Service

298 Chapter 13: Creating a User Interface Service

Return Value

The user interface service routine should return 1 if the action succeeds, or O
otherwise.

Retrieving Property Information

The oRequester argument to the user interface service function contains an object
reference to theiTool component on which the Ul service was invoked. Use this
reference to retrieve any properties of the object that are relevant to the operation
being performed by the user interface.

For example, the standard Scal eFact or user interface service displays adiaog that
lets the user set the SCALE_FACTOR property of an object. The service uses the
following statement to retrieve the current scale factor from the selected object:

oRequest er - >CGet Property, SCALE FACTOR = factor
Retrieving Widget Information

The oUl argument to the user interface service function contains an object reference
to the IDLitUI object associated with the current iTool. You can use this reference to
retrieve the IDL widget identifier of the widget that is the group leader of the iTool
user interface itself (the iTool window); the ID is stored in the GROUP_LEADER
property of the IDLitUI object. Having this widget ID allows you to retrieve screen
geometry information that allows you to calculate the position at which your user
interface should be displayed.

For example, the Scal eFact or user interface service uses the following code to
calculatethe X and Y offsets that will be used to position its own user interface over
the current i Tool:

Retrieve the widget |ID of top-Ilevel base.
oUl - >Get Property, GROUP_LEADER = grouplLeader

I F (W DCET_I NFQ(groupl eader, /VALID)) THEN BEG N
geom = W DGET_I NFQ(gr oupLeader, /GEQVETRY)
xof f set = geom scr_xsi ze + geom xof fset - 80
yof fset = geom yoffset + (geomysize - 400)/2

ENDI F

The Ul service goes on to use the calculated xof f set and yof f set values when
positioning the IDL widgets that make up the interface displayed by the service.

Creating a New Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 299

Displaying the User Interface

If the user interface being displayed by the Ul serviceis simple, it may be convenient
to include the code for creating it directly in the definition of the user interface
service itself. For example, the following is the complete definition of the

Hour 3 assCur sor user interface service:

FUNCTI ON | DLi t Ul Hour G ass, oUl, oRequester
W DGET_CONTROL, / HOURGLASS
RETURN, 1

END

Asyou can see, no information about the IDLitUI object or the selected iTool
component is used, and the displayed item itself is very simple.

In most cases, the user interface serviceis significantly more complex. In these cases
it is often useful to separate the routine that creates the service's user interface from
the code that displaysit. For example, the user interface for the ScaleFactor serviceis
displayed by the following statement:

result = | DLi twdScal eFact or (GROUP_LEADER = groupLeader, $
FACTOR = factor, XOFFSET = xoffset, YOFFSET = yoffset)
IF result EQ 1 THEN RETURN, O

This statement calls another function — IDLitwdScaleFactor — to actually display
the required user interface elements, supplying the information retrieved by other
portions of the user interface service routine. The IDLitwdScaleFactor function
returns the scale factor value selected by the user, or returns the value 1 (indicating no
scaling) if the value supplied by the user isinvalid. If the returned scale factor is 1
(either because the user entered 1 the value, or because the entered value was not a
valid value), no scaling will be performed, so the Ul service itsalf returnsthe failure
value (integer 0). The process of creating user interface elementsis discussed in
greater detail in “Creating Supporting User Interface Elements’ on page 300.

Setting Property Information

If the user has selected a new value for any of the object’s properties, that value must
be changed on the object by a call to the SetProperty method. In our example, if the
user sets a new scale factor, the following statement updates the property value,
notifies the selected object that the value has changed, and inserts the change into the
undo-redo transaction buffer:

oRequest er - >Set Property, SCALE FACTOR = result
Note that not every user interface will modify properties of the selected object.

iTool Developer’s Guide Creating a New Ul Service

300 Chapter 13: Creating a User Interface Service

Example

The following example routine is the full definition of the Scal eFact or user
interface service described in the previous sections. It is presented here again for
compl eteness, so you can see the entire function at once.

FUNCTI ON | DLi tui Scal eFactor, oU, oRequester

; Retrieve widget ID of top-Ilevel base.
oUl - >Get Property, GROUP_LEADER = groupLeader

; Retrieve geonetry information and cal cul ate of fsets.
| F (W DGET_I NFQ(gr oupl eader, /VALID)) THEN BEG N

geom = W DGET_| NFQ(gr oupLeader, / GEQVETRY)

xof fset = geom scr_xsi ze + geom xof fset - 80

yof fset = geom yoffset + (geomysize - 400)/2
ENDI F

Retrieve the current scale factor fromthe sel ected object.
oRequest er->Cet Property, SCALE FACTOR = factor

; Display the IDL widget interface allow ng the user to

change the scale factor. The new scale factor is returned

as the result of this function. If the specified value is

not a valid scale factor, the integer 1 is returned in

; result.

result = |DLi twdScal eFact or (GROUP_LEADER = groupLeader, $
FACTOR = factor, XOFFSET = xoffset, YOFFSET = yoffset)

IF result EQ1 THEN RETURN, O

Set properties on the selected object.
oRequest er->Set Property, SCALE FACTOR = result

: Return success.
RETURN, 1

END
Creating Supporting User Interface Elements

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see “ Creating Graphical User Interfacesin IDL” in the Building IDL
Applications manual. The following are some suggestions for creating IDL widget
interface code for iTool user interface services.

Creating a New Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 301

Place data collected by the user interface in the function’s return value

Create your user interface routine (the routine that creates the IDL widgets that make
up the user interface displayed by your Ul service) as afunction, returning the data
values collected by the interface in the function’s return value. If you are collecting
several values of different data types, return a structure variable containing the data.
The user interface and event-handling code should never change data or property
values within the iTool itself; al changes should be made viathe SetProperty
mechanism.

Be sure to clean up heap variables when the user interface exits

If your user interface code creates pointer or object heap variables, be sure to destroy
them before the interface code exits. If extra“hanging” heap variables are left
undestroyed, IDL can potentially run out of resourcesif the interface is displayed
numerous times.

Use the GROUP_LEADER property if it is available

Pass the widget ID contained in the GROUP_LEADER property of the IDLitUI
object to your user interface code, and set the GROUP_LEADER keyword of the top-
level base widget to this value. Setting the widget group leader to the leader of the
iTool’s own widget hierarchy ensures that your user interface will be destroyed if the
iTool itself is destroyed.

iTool Developer’s Guide Creating a New Ul Service

302 Chapter 13: Creating a User Interface Service

Registering a Ul Service

Before a user interface service can be called from an iTool, the routine that
implements the service must be registered with the iTool system. Registering a Ul
service with the system links the file containing the actual IDL code that creates the
user interface elements with a simple string that names the Ul service. Since you use
the name string in code that calls the service, the iTool itself does not need to know
anything about the display environment in which it is running.

User interface services are registered either using the ITREGISTER procedure or via
acall to the RegisterUl Service method of the IDLitUI object. In most cases,
registration is accomplished viaa call to the ITREGISTER procedurein aniTool’s
launch routine. A Ul service can be registered at any time. In practice, you will
probably find it convenient to register Ul servicesused by aniTool in theiTool launch
routine, unless you know the service has already been registered. For alist of Ul
services that are pre-registered by the standard i Tools, see “ Predefined i Tool Ul
Services’ on page 295.

Using ITREGISTER

Use the ITREGISTER routine to register a user interface service:
| TREG STER, 'U Service Nane', 'U _Service_Routine', /U _SERVICE

where Ul Service Nameis astring you will useto call the user interface service, and
Ul_Service Routineisastring that specifies the name of the file that contains the
code for the user interface service.

Note
ThefileUl _Servi ce_Rout i ne. pro must exist somewherein IDL’s path for the
service definition to be successfully registered.

If agiven user interface service has already been registered when the ITREGISTER
routineis called, the service will not be registered a second time. The registration can
be performed at any timein an IDL session before you attempt to call the user
interface service.

See “I TREGISTER” in the IDL Reference Guide manual for details.

Registering a Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 303

Example

Suppose you have a Ul service definition file named nmy Ul Ser vi ce. pr o, located in
adirectory included in IDL's 'PATH system variable. Register this service with the
iTool system with the following command:

| TREG STER, 'My U Service', 'myU Service', /U _SERVI CE
The user interface service can now be invoked viathe DoUl Service method:
success = oTool - >DoUl Service(' My U Service', self)

where oTool isan object reference to the current iTool object.
Using the RegisterUIService Method

User interface services can also be registered by acall to the RegisterUl Service
method of the IDLitUI object:

sel f->Regi sterU Service, 'My U Service', 'myU Service'

Note
In most cases, you do not have areference to the IDLitUI object available, so this

method is not generally useful. We mention it here because the user interface
services registered for use by the standard i Tools are registered in this way, rather
than viathe ITREGISTER procedure.

iTool Developer’s Guide Registering a Ul Service

304 Chapter 13: Creating a User Interface Service

Executing a User Interface Service

Once you have defined and registered a user interface service and created any
supporting user interface code, you can call the service from any iTool operation
simply by calling the DoUI Service method of the IDLitTool class.

In most cases, the DoUI Service method is called from the DoExecuteUl method of an
IDLitOperation or an IDLitDataOperation. For example, the following routineis the
DoExecuteUl method of an operation that callsthe Scal eFact or user interface
service:

FUNCTI ON | DLi t opScal ef act or: : DoExecut eUl

oTool = self->GetTool ()
IF (oTool EQ OBJ_NEW)) THEN RETURN, O

RETURN, oTool - >DoUl Servi ce(' Scal eFactor', self)

END

The GetTool method is part of the IDLitIMessaging class, which is a superclass of all
iTool operation classes; it returns an object reference to the current iTool. This
method callsthe Scal eFact or user interface service with the operation itself asthe
currently selected object, which allows the Ul service to modify the operation’s
properties. The second argument to the DoUI Service method is an object reference
that can be used by the service to modify the object’s properties.

Executing a User Interface Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 305

Example: Changing a Property Value

This example creates a user interface service named SrvExample, which displays a
dialog that allows the user to change the NAME property of the currently selected
iTool component. The SrvExample user interface serviceis launched by an
IDLitDataOperation named opName.

This example isintended as a demonstration of the techniques used to create a user
interface service. In practice, you do not have to create a user interface to change the
NAME property; it can be changed more easily by atering the value in the
Visualization browser. It is conceivable, however, that you might want to provide an
interface that allows the user to change numerous properties simultaneously, with
some values being based on other user-supplied values. Similarly, you may wish to
display adialog that allows the user to set the properties of an operation every time
that operation is executed, without forcing the user to open the Operations browser.

Creating and using the SrvExampl e user interface service involves the following
steps:

e Creating the SrvExample service

e Creating the SrvExample interface

e Creating an operation that calls the service

* Registering the SrvExample service

* Registering the opName operation

¢ Invoking the opName operation
Creating the SrvExample service

The SrvExample user interface service consists of a single function named
SrvExample, stored in afile named sr vexanpl e. pr o that islocated in a directory
that isincluded in the IDL PATH system variable.

FUNCTI ON SrvExanpl e, oU, oRequester

Retrieve widget |ID of top-Ilevel base.
oUl - >CGet Property, GROUP_LEADER = groupLeader

Retrieve the original value of the nane property

; attribute fromthe selected item
oRequest er->Cet Property, NAME = ori gNane

iTool Developer’s Guide Example: Changing a Property Value

306 Chapter 13: Creating a User Interface Service

Di splay the widget U that allows the user to choose
a new nane.

newNanme = wdSrvExanpl e(NAME = ori gNarme, $
GROUP_LEADER = groupLeader)

Set the property val ue.
oRequest er->Set Property, NAME = newNane

Ret urn success
RETURN, 1

END
Discussion

The function that implements this example service follows the pattern outlined in
“Creating the Ul Service Routing” on page 297. It uses the object reference to the
IDLitUI object to retrieve the widget ID of the top-level base of the iTool user
interface, and later uses the retrieved value to set the GROUP_LEADER keyword to
the user interface routine. It usesthe object reference to the “requester” object (in this
case, the iTool component that is selected in the current iTool) to retrieve the NAME
property. It then calls aroutine (wdSr vExanpl e) that displays a user interface
allowing the user to select anew value for the NAME property.

The string returned by the wdSr vExanpl e routineis used to set the NAME property
of the selected iTool component, and the routine returns 1 for success.

Creating the SrvExample interface

The interface presented by the SrvExample user interface service consists of a set of
routines that create an IDL widget interface. The creation routine and two simple
event-handling routines are stored in a file named wdsr vexanpl e. pr o that is
located in adirectory that isincluded in the IDL PATH system variable.

Widget Creation Function

The following function creates the widget interface that is displayed when the
SrvExample user interface service is called. The widget creation routine should be
thelast routinein the file.

FUNCTI ON wdSrvExanpl e, NAME = origNanme, TITLE = dialogTitle, $
GROUP_LEADER = groupLeader

Check to see if a title for the dialog was suppli ed.
If not, set a default title.

I F (N_ELEMENTS(di al ogTitle) EQ 0) THEN $
di al ogTi tl e=' Choose a Nan®'

Example: Changing a Property Value iTool Developer’s Guide

Chapter 13: Creating a User Interface Service

; Create the dialog.

wBase = W DGET_BASE(/ COLUWN, TITLE = dialogTitle,

GROUP_LEADER = groupLeader)
wlext = W DGET_TEXT(wBase, YSIZE = 3, $
VALUE=[' The original NAME is:', origNane, $
"Enter a new nane:'])

307

$

WEdit = W DGET_TEXT(wBase, VALUE = origNane, /EDI TABLE)

wSubBase = W DGET_BASE(WBASE, / ROW
WOK = W DGET_BUTTON(wSubBase, VALUE=' OK', $
EVENT_PRO=' wdSr vExanpl e_ok')

wCancel = W DGET_BUTTON(wSubBase, VALUE=' Cancel',

EVENT_PRO=' wdSr vExanpl e_cancel ")

$

; Create a state structure to hold inportant val ues.

state = { wOK WK, $
wCancel : wCancel , $
WEdit:wEdit, $
pNane: PTR_NEW / ALLOCATE) }

; Store the original property name attribute in the

; state structure.
*state. pNane = ori gNane

; Store the state structure in the user value of the

; top-level wi dget base.
W DCGET_CONTRCL, wBase, SET_UWVALUE = state

; Realize the w dget hierarchy.
W DGET_CONTROL, wBase, /REALIZE

; Call XMANAGER
XMANAGER, 'wdSrvExanpl e', wBase

; After XMANAGER exits, retrieve the value of the nane

; property attribute fromthe state structure.

result = (N_ELEMENTS(*state.pNane)) ? *state.pNane :

; Free the pointer.
PTR_FREE, state. pNane

ori gNane

; Return the new value of the nanme property attribute.

RETURN, result

END

iTool Developer’s Guide Example: Changing a Property Value

308

Chapter 13: Creating a User Interface Service

Discussion

It is beyond the scope of this chapter to discuss the IDL widget programming
techniques used in this example. For more information on widget programming, see
the Building IDL Applications manual. Several points are worth nothing, however.

* Thewidget ID of the top-level base retrieved in the SrvExample routineis
passed to thisroutine, and used as the value of the GROUP_L EADER keyword
to WIDGET_BASE. Thisensuresthat if theiTool itself isminimized or closed
while the example dialog is displayed, it will be handled properly.

¢ Theoriginal value of the NAME property is passed to thisroutine, and is
stored in an IDL pointer variable within the state structure that is associated
with the dialog. This allows the event routine that actualy retrieves the value
entered by the user to communicate the new value back to the widget creation
routine, but it also meansthat the pointer must be freed before the routine exits.

Event-handling Routines

The following event-handling procedures handle widget events generated by the
widget interface that is displayed when the SrvExample user interface serviceis
caled.

PRO wdSr vExanpl e_ok, event
Cet the stashed state structure fromthe user val ue
of the top-Ievel base w dget.
W DGET_CONTROL, event.top, GET_UVALUE = state

CGet the value fromthe editable text field.
W DGET_CONTROL, state.wEdit, CGET_VALUE = val ue

Store the text value in a pointer so we can access
it fromthe nain routine
*state. pNane = val ue

Destroy the dial og.
W DGET_CONTROL, event.top, /DESTROY

END

PRO wdSr vExanpl e_cancel , event

Not hi ng to do, just destroy the dial og.
W DGET_CONTROL, event.top, /DESTROY

END

Example: Changing a Property Value iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 309

Discussion

When the user clicks the OK button, the current value of the editable text widget is
placed in the pointer stored in the state structure’s pNane field.

Creating an operation that calls the service

In order to launch the SrvExample user interface service, the user must be able to
select an operation that calls the DoUl Service method. This example uses an
IDLitDataOperation named opName, which ssimply retrieves the list of currently
selected items and calls the SrvExample user interface service. The code for this
operation is stored in afile named opnarme__def i ne. pro that islocated in a
directory that isincluded in the IDL PATH system variable.

FUNCTI ON opNane: : Init, _REF_EXTRA = _extra

Initialize the operation, setting the "show U " property.
Note that this operation will operate on all i Tool
conponent types.

success = sel f->IDLitDataQperation::Init($

NAME=" Renane Conponent", $

DESCRI PTI ON=" Rename an i Tool conponent”, $

/ SHOW EXECUTI ON_Ul, TYPES='',6 _EXTRA=_extra)

RETURN, success
END
FUNCTI ON opNane: : DoExecut eUl
Cet a reference to the current i Tool and
; make sure it is valid.
oTool = self->GetTool ()
IF (oTool eq OBJ_NEW)) THEN RETURN, O

;. Get the list of selected itens.
sel ltem = oTool - >Get Sel ect edl t ens()

; Call the U service on the first itemin the |ist
;. of selected itens.
RETURN, oTool - >DoUl Servi ce(' Exanpl e Service', selltenf0])

END

iTool Developer’s Guide Example: Changing a Property Value

310 Chapter 13: Creating a User Interface Service

PRO opNane__defi ne

struct = {opNanme, $
inherits |DLitDataQperation $
}

END
Discussion

Only two methods are required: Init and DoExecuteUl. Since this operation is based
on the IDLitDataOperation class, al interaction with the iTools undo/redo system is
automated.

Even though all of the items that are currently selected in theiTool are retrieved by
the GetSel ectedlitems method, only the first item is passed to the SrvExample user
interface service for processing. Handling multiple selected items would require a
more complicated user interface.

The process of defining an IDLitDataOperation is discussed in detail in Chapter 7,
“Creating an Operation”.
Registering the SrvExample service

In order for the SrvExample user interface service to be available, it must be
registered with the current iTool. The following line in the iTool’s launch routine
allows the service to be called with the name “ Example Service”:

| TREG STER, ' Example Service', 'srvExanple', /U _SERVICE
Registering the opName operation

To use the opName operation within aniTool, the operation must be registered in the
iTool’s definition. The following statement registers the operation with the name
“Property Name” and placesit in the Operations menu of theiTool.

sel f->Regi sterCperation, 'Property Nane', 'opNane', $
| DENTI FI ER = ' Qper ati ons/ PropertyNaneg'

Invoking the opName operation
To use the SrvExample service, the user would launch an i Tool for which the opName

operation is registered, select an iTool component in the window, and select
Property Name from the Oper ations menu.

Example: Changing a Property Value iTool Developer’s Guide

Chapter 14:

Creating a User
Interface Panel

This chapter describes the process of creating a user interface panel.

Overviewcoviiiiinnannnn. 312 RegisteringaUl Panel 320
Creating aUl Panel Interface 313 Example: A SimpleUl Pandl 322
Creating Callback Routines 318

iTool Developer’s Guide 311

312

Chapter 14: Creating a User Interface Panel

Overview

A Ul Panel isacollection of user interface elements displayed in one or more tabs
located on the right, left, or bottom edge of an iTool window. The Ul panel interface
makes it easy to attach a set of controls chosen by the iTool developer to the standard
iTool interface.

Note
Intheinitial iToolsrelease, only one user interface styleis supplied: the IDL widget
interface toolkit. As aresult, Ul panels consist of widgets from the IDL graphical
user interface toolkit, displayed in atab widget. AstheiTools framework continues
to grow, additional user interface styles may be created either by RSI or by third-
party developers.

Controlson a Ul panel exchange information with the iTool itself via one or more
callback routines. These routines allow the iTool to modify the controlsin the Ul
panel as the user selects different visualization components or otherwise changes the
contents of the visualization.

Creating and Using a Ul Panel

Overview

To add a Ul panel to the iTool interface, you will do the following:

e Createan IDL procedure that creates the user interface elements that comprise
the panel. See “Creating a Ul Panel Interface” on page 313 for details.

e Create one or more event-handling routines to handle events generated by the
user interface elementsin the panel. See “ Creating a Ul Panel Interface” on
page 313 for details.

e Create one or more callback routines to control the display of the items on the
panel as the contents of the iTool window change. See “ Creating Callback
Routines’ on page 318 for details.

¢ CreateaniTool with the TY PES property set to the appropriate iTool type and
register the Ul panel with the iTool that will display it. See “ Registering a Ul
Panel” on page 320 for details.

iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 313

Creating a Ul Panel Interface

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see “ Creating Graphical User Interfacesin IDL” in the Building IDL
Applications manual. Keep the following points in mind when creating IDL widget
interface code for iTool user interface panels.

Panel Creation Routines

A user interface panel creation routine is similar to the widget creation routine that
creates a standal one widget application, but with the following important differences:

Signature

The routine signature of a user interface panel looks like this:
PRO Panel Name, wPanel, oUl

where PanelName is the name of the routine, wPanel is an input argument that

contains the widget ID of the panel widget associated with this panel, and oUl isan
input argument that contains an object referenceto the IDLitUI object associated with
the iTool that includes the user interface panel.

Event Loop and Widget Management

Standal one widget applications must arrange for the management of their widgets
and the creation of an event loop; these details are usually handled by the
XMANAGER or WIDGET_EVENT routines. A user interface panel doesnot need to
cal XMANAGER or WIDGET_EVENT; widget management is handled by the main
iTool interface code. A user interface panel simply attachesitself to the bulk of the
iTool interface.

About the Panel Widget

Intheinitial release of the iTools, user interface panels are contained in an IDL tab
widget displayed on the right side of the iTool window. We will refer to this tab
widget as the panel widget in this documentation, since al user interface elementsin
a Ul pand are contained in this widget.

The panel widget itself is created automatically when a user interface panel is
registered with aniTool, and itswidget ID is passed to the panel creation routine
along with areference to theiTool user interface object.

iTool Developer’s Guide Creating a Ul Panel Interface

314 Chapter 14: Creating a User Interface Panel

Use the widget 1D of the panel widget to set the title of the tab that appears at the top
of the panel. For example the following lines might occur at the beginning of a
routine that builds a user interface panel:

PRO Exanpl ePanel, wPanel, oU

; Set the title used on the panel's tab.
W DGET_CONTROL, wPanel, BASE_SET_TI TLE=' Exanpl e Panel"

. more panel code.

ThewPanel argument contains the widget ID of the panel widget, which was
assigned when the iTool interface was built. The oUl argument contains an object
reference to the IDLitUI object associated with the current iTool. The call to the
WIDGET_CONTROL procedure sets thetitle of the tab to be “ Example Panel.”

You may also find it useful to specify a single event-handling routine for al events
generated by the panel widget. You can specify the name of this routine with a
statement similar to the following:

W DCGET_CONTROL, wPanel, EVENT_PRO = ' Exanpl ePanel _event'

where Exanpl ePanel _event isreplaced by the name of the event-handling routine
you create for your panel. Of course, you can also specify event-handling routines for
specific widgets within the panel using the EVENT_PRO and EVENT_FUNC
keywords to the widget creation routines.

Registering the Panel with the User Interface Object

To ensure that notifications from theiTool itself are passed to the user interface panel
as heeded, the panel creation routine must register the panel widget with the iTool
user interface object. This registration step allows you to specify the name of the
callback routine that will be called when anotification is generated by theiTool itself.

To register a user interface panel, use the RegisterWidget method of the IDLitUI
object:

id = oU ->Regi ster Wdget (wPanel , 'Panel', 'Ex_call back")

where oUl isan object reference to the IDLitUI object and wPanel isthe widget ID
of the panel widget; both are passed in as argumentsto the panel creation routine. The
second argument to the RegisterWidget method (' Panel ' , in this example) isthe
human-readabl e name of the Ul panel. Thethird argument (' Ex_cal | back' , inthis
example) isthe name of the panel’s callback routine. See “IDLitUI::RegisterWidget”
in the IDL Reference Guide manual for details. Callback routines are discussed in
detail in “Creating Callback Routines’ on page 318.

Creating a Ul Panel Interface iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 315

Adding Observers

For notification messages to be passed to the correct callback routine, an
OnNotifyObserver must be established by calling the AddOnNotifyObserver method
of the IDLitUI abject. The AddOnNotifyObserver method takes as its arguments the
ID created by the call to the RegisterWidget method (as discussed in the previous
section) and the component object identifier of theiTool component to observe. Once
the observer is created, each time the specified i Tool component generates a message
(that is, when the component itself calls the DoOnNotify method), the registered
widget callback routineis called with the message as one of its arguments. The call to
the AddOnNotifyObserver method looks like:

oUl - >AddOnNot i f yCbserver, id, Component

where id is an identifier created by a call to the RegisterWidget method, and
Component is the component object identifier of the iTool component being
observed. See“IDLitUl::AddOnNotifyObserver” in the IDL Reference Guide manual
for additional details.

The component argument to the AddOnNotifyObserver method can be any string
value. For example, any time the selection within an iTool window changes, the
DoOnNotify method is called with itsfirst parameter (idOriginator) set to the string
value' Vi sual i zat i on' rather than to the object identifier of acomponent. An
observer whose Component argument is set to the string ' Vi sual i zat i on' will be
notified each time the selection changes in the iTool window. For example, the
following statement specifies that the panel widget (as registered viathe
RegisterWidget method) will receive notifications whenever a visualization changes
in the iTool window.

oUl - >AddOnNot i fyCbserver, id, 'Visualization'

Here, i d istheidentifier created in the previous section. The second argument
(" Visualization') specifies that messages will be generated whenever a
visualization is modified.

“Example: A Simple Ul Panel” on page 322 provides examples of observers of both
types. See “iTool Messaging System” on page 40 for background information on
observers and messages.

iTool Developer’s Guide Creating a Ul Panel Interface

316 Chapter 14: Creating a User Interface Panel

Create the Widget Hierarchy

The widget hierarchy of auser interface panel 1ooks like the following:

Panel w dget

- Base wi dget

- other wi dgets

Since the widget 1D of the panel widget is supplied as an argument to the panel
creation routine, all that isleft isto create a base widget with the panel widget asits
parent, and to populate the base widgets with other widgets as necessary.

Passing State Information

State information can be passed between widget creation routines and widget event
handling routinesin several different ways. The method used most often in iTool user
interface panelsisto create a state structure in the panel creation routine, store the
appropriate valuesin this structure, and assign the structure to the widget user value
of one of the widgetsin the panel widget hierarchy. For amore detailed discussion of
this technique, see “Managing Application State” in Chapter 29 of the Building IDL
Applications manual.

In addition to widget | Ds and other state information from your widget interface, you
may find it useful to store object references to the iTool object and to the IDLitUI
object associated with the iTool object in the state structure. Having these object
references available in your event handler and callback routines allows you to take
advantage of methods available in the iTool and user interface objects.

Create Event Handlers

Like other widget applications, iTool user interface panels use one or more event
handling routines to perform actions based on the user’s interaction with the widgets
in the interface. As with generalized widget applications, you can write event
handling routines for a user interface panel in numerous ways; see “Widget Event
Processing” in Chapter 29 of the Building IDL Applications manual for an in-depth
discussion of widget event handling.

Thefollowing suggestions apply specifically to event handlersfor i Tool user interface
panels:

Creating a Ul Panel Interface iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 317

Use the GetSelectedltems Method

Often, you will want to apply an operation to one or moreitemsin theiTool window
when the user selects an element on the user interface panel. Use the
GetSelecteditems method of the iTool object to retrieve references to theiTool
component objects that are selected.

The following statement retrieves an array of object referencesto al of the currently
selected itemsin theiTool:

oTargets = state.oTool - >Get Sel ectedl t ems(COUNT = nTar g)

Note
Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the st at e structure variable. The COUNT keyword to the
GetSelectedltems method returns the number of items selected.

Use the DoAction Method

In many cases, the user’s interaction with the user interface panel will instruct the
iTool to apply an iTool operation to the selected item. Where possible, use the
DoAction method of the operation to perform thistask. Calling the DoAction method
ensures that the changes caused by the operation are properly inserted into the i Tool
undo/redo system.

For example, the following statement:
success = state.oU ->DoAction(' Operations/Rotate/RotatelLeft')

calls the DoAction method on the IDLitUI object associated with the current i Tool,
invoking the operation registered with the system with the operation identifier
' Operations/Rotate/ RotatelLeft'.

Redraw the iTool Window

Call the RefreshCurrentWindow method of the i Tool object to force theiTool’s
window to update, displaying any changes that took place as the result of the
operations executed in your event handling routine:

st ate. oTool - >RefreshCurrent W ndow
Note

Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the st at e structure variable.

iTool Developer’s Guide Creating a Ul Panel Interface

318 Chapter 14: Creating a User Interface Panel

Creating Callback Routines

User interface panel callback routines are executed when an iTool component, for
which the panel has created an observer, generates a notification message. The
callback routine then uses the value of the notification message to determine what
action to take. Observers are created as described in “Adding Observers’ on

page 315.

Callback Routine Signature

A user interface panel widget callback routine has the following signature:
PRO Panel Nane_cal | back, wPanel, 1dOriginator, |dMessage, Val ue
where:
« PanelName_callback is the name of the callback routine,

e wPanel isthewidget ID of the panel widget (see “About the Panel Widget” on
page 313),

e IldOriginator is astring identifying the source of the message (usually the
object identifier of aniTool component object, but it can be any string value),

¢ ldMessageisastring that uniquely identifies the message being sent, and

¢ \Valueisavaluethat is associated with the message being sent.
See “iTool Messaging System” on page 40 for more information on the |dMessage
and Value arguments.

Registration of Callback Routines

Callback routines are registered along with the user interface panel itself, in the call
to the RegisterWidget method of the IDLitUI object. See “ Registering the Panel with
the User Interface Object” on page 314 for details.

Retrieving Widget State Information
The wPanel argument to the callback routine contains the widget 1D of the panel

widget. Thiswidget ID provides away for the callback routine to retrieve state
information about the widgets that make up the panel.

Creating Callback Routines iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 319

For example, if you have saved a state structure containing widget information in the
user value of the first child widget of the panel widget, code similar to the following
would alow you to retrieve that state structure:

Make sure we have a valid w dget ID.
I F ~ WDGET_I NFQ(wPanel , /VALID) THEN RETURN

Retrieve the widget ID of the first child w dget of

; the U panel.
wChi | d = W DGET_I NFQ(wPanel , / CHI LD)

Retrieve the state structure fromthe user val ue of

; the first child wi dget.

W DGET_CONTROL, wChild, GET_UWVALUE = state
This technique is used in the example user interface panel described in “Example: A
Simple Ul Panel” on page 322.

iTool Developer’s Guide Creating Callback Routines

320 Chapter 14: Creating a User Interface Panel

Registering a Ul Panel

User interface panels are registered with the iTool system using the ITREGISTER
procedure. Once a Ul panel has been registered, it will be displayed for any iTool
whose TY PE property matches the string specified viathe TY PES keyword when
registering the panel. Similarly, if an iTool displays avisualization whose TY PE
property matches the string specified viathe TY PES keyword when registering the
panel, the panel will be displayed for that iTool.

Registering the Panel in the iTool Launch Routine

In most cases, you will register your user interface panel in aniTool’s launch routine,
with a statement like:

| TREG STER, panel Nane, panel Code, TYPES = panel Type, /U _PANEL

where panelName is a string containing the human-readable name of your user
interface panel, panelCode is a string containing the name of the IDL procedure that
creates the user interface panel, and panel Type is a string that identifies the type of
iTool or visualization for which the panel should be displayed. The Ul_PANEL
keyword must be present in order to register a user interface panel using the
ITREGISTER procedure.

See “I TREGISTER” in the IDL Reference Guide manual for additional details.
About the TYPE property

To display a user interface panel for agiven iTool, you will not only need to register
the panel in that iTool’s launch routine, but also specify a matching type when
initializing the iTool itself. TheiTool system will display aregistered panel in an
iTool whose TY PE property contains a string that matches the string specified viathe
TY PES keyword when registering the panel.

To set the TY PE property of aniTool use a statement like thisin theiTool’s Init
method:

sel f->1DLit Tool base: : I nit (_EXTRA = _extra, TYPE = panel Type)

where panel Type is a string that matches the string used as the value of the TYPES
keyword to ITREGISTER.

Similarly, theiTool system will display aregistered panel when aniTool displays a
visualization whose TY PE property contains a string that matches the string specified
viathe TY PES keyword when registering the panel.

Registering a Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 321

To set the TY PE property of avisualization, use a statement like thisin the
visualization’s Init method:

sel f->IDLitVisualization::Init(_EXTRA = _extra, TYPE = panel Type)

where panel Type is a string that matches the string used as the value of the TY PES
keyword to ITREGISTER.

iTool Developer’s Guide Registering a Ul Panel

322 Chapter 14: Creating a User Interface Panel
Example: A Simple Ul Panel

The following example creates a simple user interface panel consisting of two
buttons: Rotate and Hide/Show. The Rotate button rotates the selected i Tool

component 90 degrees, if possible. The Hide/Show button toggles the value of the
HIDE property of the selected object.

&1 IDL itTool [Untitled*] [_ (O] x|
File Edit Insert Operations Window Help

Dls|a|&| || s [mlef fo:=] [x o] AlNa|o|s]e]

Example Panel |

] Choose an Actior:

Fotate |tem |
Show/Hide [tem |

Figure 14-1: The example panel.

Note
This example isintended to demonstrate the concepts involved in creating a user
interface panel. For examples of more useful panels, see thefiles
i dl'i twdi ngnmenu. pro andi dlitwdvol menu. pr o, which create the user
interface panelsfor the IMAGE and IVOLUME iTools, respectively. Both filesare

locatedinthel i b/ it ool s/ ui _wi dget s subdirectory of the IDL installation
directory.

To display a user interface panel named Exampled_panel, this example creates the
following items:

¢ Panel Creation Routine

* Panel Event Handler Routine
» Panel Callback Routine

e Panel Type Specification

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 323

Note
The code for this example user interface panel isincluded in thefile
exanpl e4_panel . pro intheexanpl es/ doc/ i t ool s subdirectory of the IDL
distribution. Enter
exanpl e4t ool
at the IDL prompt to create an instance of aniTool that displays the panel, or

.conpi |l e exanpl e4_panel

to open the. pr o filein the IDL editor.

Panel Creation Routine

The user interface panel creation routine does the work of displaying the IDL widgets
that make up the Ul panel display.

PRO Exanpl e4_panel , wPanel, oUl

; Set the title used on the panel's tab.
W DGET_CONTROL, wPanel, BASE SET Tl TLE = ' Exanpl e Panel"

; Specify the event handl er
W DGET_CONTROL, wPanel, EVENT_PRO = "Exanpl e4_panel _event"

; Register the panel with the user interface object.

stroserverldentifier = oU ->Regi ster Wdget (wPanel, "Panel", $
' Exanpl e4_panel _cal | back')

; Register to receive selection events on visualizations.

oUl - >AddOnNot i f yQbserver, strCObserverldentifier, $
"Visualization'

;. Retrieve a reference to the current i Tool.
oTool = oUl ->Get Tool ()

; Create a base widget to hold the contents of the panel.
wBase = W DGET_BASE(wPanel , / COLUWN, SPACE = 5, /ALIGN_LEFT)

; Create panel contents.
wLabel = W DGET_LABEL(wBase, VALUE = "Choose an Action:", $
/ ALl GN_LEFT)

; Get the Operation ID of the rotate operation. If the operation
; exists, create the "Rotate |Itenf button and nonitor whether

iTool Developer’s Guide Example: A Simple Ul Panel

324 Chapter 14: Creating a User Interface Panel

; the operation is available for the selected item
opl D = ' Operations/ Operations/Rotate/ RotatelLeft"’
oRotate = oTool - >Get Byl denti fi er (opl D)

| F (OBJ_VALID(oRotate)) THEN BEG N

i dRotate = oRotate->CetFullldentifier()

wRot ate = W DGET_BUTTON(wBase, VALUE = "Rotate Itent, $

UVALUE=" ROTATE")

; Monitor for availablity of the Rotate operation.

oUl - >AddOnNot i fyCbserver, strCoserverldentifier, idRotate
ENDI F ELSE $
idRotate = 0

wHi de = W DGET_BUTTON(wBase, VALUE = "Show Hide Iteni, $
UVALUE = "H DE")

; Pack up the state structure and store in first child.
state = {oTool : oTool, $

oU:oU, $

idRotate : idRotate, $

wPanel : wPanel , $

wBase: wBase, $

wRot at e: WRot ate, $

wHi de: wHi de $

}
WwChi | d = W DGET_I NFO(wPanel , / CHI LD)

IF wChild NE O THEN $
W DGET_CONTROL, wChild, SET_WALUE = state, /NO COPY

END
Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the Exampled4_panel example; the comments in the code that creates the user
interface panel describe most of the features. The following points are worth noting,
however:

¢ The panel creation routine accepts two arguments: the widget ID of the panel
widget (stored in the variable wPanel , in this example), and an object
reference to the IDLitUI object associated with theiTool (stored in the variable
oUl).

¢ Theexample usesthe EVENT_PRO keyword to the WIDGET_CONTROL
procedure to establish an event-handling routine, Exanpl e4_panel _event .
This event-handling routine is described in “Panel Event Handler Routine” on
page 325.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 325

e The example registers asingle callback routine,
Exanpl e4_panel _cal | back, using the RegisterWidget method of the
IDLitUI class. The callback routine is described in “Panel Callback Routine”
on page 327.

¢ The example adds an OnNotifyObserver for the Vi sual i zat i on component
described in “Adding Observers’ on page 315.

e The example uses the GetTool method of the IDLitUI object to retrieve an
object reference to the iTool with which the panel is associated. This reference
islater used to retrieve areference to the IDLitOperation object that performs
theRot at e Left operation, placing it in the variable oRot at e.

e IftheRot at e Left operationisavailabletotheiTool, the example placesthe
Rot at e button on the user interface panel. It also establishes an observer to
watch for changesin the availability of the Rot at e Left operation, which
will change based on the item selected. The callback routine uses the messages
received by this observer to sensitize and desensitize the Rot at e button as
necessary.

* The example packages important information in a state structure, and assigns
this structure to the user value of thefirst child widget of the panel widget. The
event-handling and callback routines will retrieve this state structure and use
the information contained therein.

Panel Event Handler Routine

The event-handler routine receives widget events generated by the widgets that make
up the user interface panel, and acts accordingly.

PRO Exanpl e4_panel _event, event

Retrieve the widget ID of the first child w dget of
the U panel .
wChi | d = WDGET_I NFQ(event . handl er, /CHI LD)

Retrieve the state structure fromthe user val ue of
the first child w dget.
W DGET_CONTROL, wChild, GET_UVALUE = state

Retrieve the user value of the w dget that generated
t he event.
W DGET_CONTROL, event.id, GET_WALUE = uval ue

Now do the work for each panel item

SW TCH STRUPCASE(uval ue) OF
' ROTATE' : BEGA N

iTool Developer’s Guide Example: A Simple Ul Panel

326 Chapter 14: Creating a User Interface Panel

; Apply the Rotate Left operation to the selected item
success = state.oU ->DoAction(state.idRotate)
RETURN
END
"H DE : BEG N
; Hide the selected item
oTargets = state.oTool ->Get Sel ect edltens(count = nTarQg)
IF nTarg GT 0 THEN BEG N
If there are selected itenms, use only the |ast
; selection.
oTarget = oTargets[O0]
; Get the i Tool identifier of the selected item
name = oTarget->GetFullldentifier()
; Retrive the setting of the H DE property.
oTar get - >Get Property, HI DE = hide
Change the value of the H DE property fromO to 1
or from1l to 0. Use the DoSetProperty and
Conmi t Actions nmethod to ensure that the change
;. is entered into the undo/redo transacti on buffer.
void = state.oTool - >DoSet Property(nanme, "H DE', $
((hide+1l) MOD 2))
state. oTool - >Conmi t Acti ons
ENDI F
BREAK
END
ELSE:
ENDSW TCH

: Refresh the i Tool w ndow.
st at e. oTool - >Ref r eshCurr ent W ndow

END
Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the Example4_panel event handler; the commentsin the code describe most of the
features. The following points are worth noting, however:

« |f the event received by the event handler routine is generated by the Rot at e
button, the example calls the DoAction method of the IDLitUI object, with the
identifier of the Rot at e Left operation asits argument.

« If the event received by the event handler routine is generated by the
Hi de/ Show button, the example does the following:

* Usethereferenceto theiTool object stored in the state structure to retrieve
thelist of selected items using the GetSel ecteditems method.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 327

* Retrieve the object identifier of the last item selected.
¢ Retrievethe value of the HIDE property of the selected item.

¢ Usethe DoSetProperty method of the IDLitTool object to toggle the value
of the HIDE property for the selected item.

¢ Commit the property change in the undo/redo transaction buffer using the
CommitActions method of the IDLitTool object.

e After theiTool display has been changed, call the RefreshCurrentWindow
method of the IDLitTool object to redraw the iTool window.

Panel Callback Routine

The user interface panel callback routine is called whenever a component, for which
an OnNotifyObserver has been registered, generates amessage. It parses the message
received and takes action as necessary.

PRO Exanpl e4_panel _cal | back, wPanel, strID, nessageln, conponent

; Make sure we have a valid w dget |D.
| F ~ WDGET_I NFQ(wPanel , /VALID) THEN RETURN

Retrieve the widget ID of the first child w dget of
; the U panel.
wChi | d = W DGET_I NFQ{ wPanel , / CHI LD)

Retrieve the state structure fromthe user val ue of
; the first child widget.
W DGET_CONTROL, wChild, GET_UWVALUE = state

; Process as necessary, depending on the nessage received.
SW TCH STRUPCASE(nessagel n) OF

Thi s section handl es nmessages generated when the rotate
operation beconmes avail abl e or unavail able, and sensitizes
; or desensitizes the "Rotate" button accordingly.
" SENSI Tl VE' :
" UNSENSI Tl VE' : BEG N

W DGET_CONTROL, state.wRotate, $

SENSI TI VE = (nessageln EQ ' SENSI Tl VE')

BREAK

END

Thi s section handl es nmessages generated when the
itemselected in the i Tool wi ndow changes and changes
; the sensitivity of the "H de/ Show' button accordingly.
' SELECTI ONCHANGED : BEG N

1

iTool Developer’s Guide Example: A Simple Ul Panel

328 Chapter 14: Creating a User Interface Panel

Retrieve the itemthat was sel ected | ast.

0Sel = state.oTool ->Get Sel ect edl t ens()

oSel = 0Sel [0]
If the last itemselected is not a visualization,
desensitize the "Hi de/ Show' button.

I F (~OBJ_ISA(0Sel, 'IDLITVISUALIZATION)) THEN $
W DGET_CONTROL, state.wH de, SENSITIVE = 0 $
ELSE BEG N

If the selected object is a visualization, sensitize
; the "Hide/ Show' button.
W DGET_CONTROL, state.wH de, SENSITIVE = 1
ENDEL SE
BREAK
END
ELSE:
ENDSW TCH

END
Discussion
The example panel’s callback routine performs the following tasks:

¢ Usesthewidget ID provided in the wPanel argument to retrieve the widget
state structure stored in the first child widget of the panel widget.

« If thevalue of the nessagel n argument is either SENSI TI VE or
UNSENSI TI VE, change the sensitivity of the Rot at e button (stored in the
wRot at e field of the widget state structure) as necessary.

e |f thevalue of the nessagel n argument is SELECTI ONCHANGED, perform the
following tasks:

¢ Usethereferenceto theiTool object stored in the oTool field of the state
structure to retrieve an object reference to the last selected component.

« If the selected component is not a visualization, desensitize the
Hi de/ Show button.

e |f the selected component is a visualization, sensitize the Hi de/ Show
button.

Panel Type Specification

In order to display the Example4_panel user interface panel along with aniTool, the
following two things must happen:

1. TheUl panel must be registered, using the ITREGISTER procedure.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 329

2. A tool with the appropriate TY PE must be created.

For the purposes of this example, we will create an iTool named exanpl e4t ool ,
with alaunch routine named exanpl e4t ool . pr o, and an iTool object definition
routine named exanpl e4t ool __defi ne. pro.

Note
Both exanpl e4t ool . pr o, and exanpl e4t ool __defi ne. pro areincluded in
the exanpl es/ doc/ i t ool s subdirectory of the IDL distribution.

Inthe exanpl e4t ool . pr o file, weincluded the following statement:

| TREG STER, ' Exanpl e Panel', 'Exanpled_panel', TYPE = 'EXAMPLE , $
/ U _PANEL

Setting the TY PE keyword equal to the string EXAMPLE specifies that the panel
should be displayed for al iTools of thistype.

Inthe exanpl e4t ool __defi ne. pr o file, we include the string EXAMPLE in the
TY PE property specified in the Init method:

FUNCTI ON exanpl ed4tool :: 1nit, _REF EXTRA = _extra

IF (self->IDLitTool base::Init(_EXTRA = _extra, $
TYPE = ' EXAMPLE') EQO0) $
THEN RETURN, O

Since the TY PE specified for the user interface panel in the call to ITREGISTER
matches the TY PE defined for our example iTool class, calling the launch routine
exanpl e4t ool at the IDL Command Line creates a new iTool and displays the
Example4_panel panel on the right side of the iTool window.

iTool Developer’s Guide Example: A Simple Ul Panel

330 Chapter 14: Creating a User Interface Panel

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 15:

Creating a Custom
ITool Widget Interface

This chapter describes the process of creating an iTool user interface using IDL widgets.

About Custom iTool Widget Interfaces ... 332

Overview: Creating an iTool Interface ... 335
iTool Widget Interface Concepts 338
Creating the Interface Routine 340
AddingMenus 344
AddingaToolbar 346
Adding aniTool Window 348

iTool Developer’s Guide

AddingaStatusBar 350
Adding aUser Interface Panel 351
Handling Callbacks 352
Handling ResizeEvents 354
Handling Shutdown Events 356
Creating an iTool Launch Routine 358
Example: a CustomiTool Interface 360

331

332 Chapter 15: Creating a Custom iTool Widget Interface

About Custom iTool Widget Interfaces

The standard interface to the i Tools included with IDL is constructed from IDL
widgets, using a number of special compound widgets designed to work with the
iTool system. Other chaptersin this section of theiTool Developer’s Guide describe
how to use the user interface display mechanisms of the iTool system to add
functionality to your own iTools within the constraints of the standard i Tool interface.
This chapter describes how to create a hybrid i Tool interface using both i Tool
compound widgets and “traditional” IDL widgets.

Before beginning the process of creating a new IDL widget-based user interface that
includes iTool components, you should take the following points into consideration:

¢ You can use acustom iTool user interface to mix iTool components with
traditional DL widgets, but you will still be using theiTool system. This means
that the custom interface you create is the interface to an iTool, not simply to a
collection of widgets. You may need to create aniTool class definition for your
tool, register iTool components, and handle user interface callbacks.

¢ The mechanisms available for interacting with iTool components such as the
iTool draw window from outside the i Tools framework are more limited (and
in some cases more cumbersome) than those available if you write i Tool
framework code.

* Whilethe standard interface to the iTools uses IDL widgets, the iTools
framework and the standard i Tools are designed in such away that a non-
widget i Tool interface (e.g. a Java or web-based interface) could be created and
the standard i Tools would work seamlessly with the new interface. Custom
iTool interfaces that rely on traditional IDL widgets will only functionin
environments that support the display of IDL widgets.

Why Create a New Widget Interface?

In most cases, you will be able to extend the iTool system to include your own
functionality without modifying the standard i Tool user interface. You can create and
register new operations, for example, without writing any interface code at all. If your
application requires extrainterface el ements not present in the standard interface, you
can include them in a user interface panel associated with your tool. So why create a
new interface using IDL widgets? The following are two possible reasons to create a
custom interface:

You are updating an existing application — You may have an existing widget
application that uses atraditional draw widget to display visualizations. Replacing

About Custom iTool Widget Interfaces iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 333

the traditional draw widget with an iTool draw widget will require substantial
revisions to your existing code, but making the revisions may be more efficient than
recreating your application using only the iTool framework.

Your application has a complex interface — Your application may require amore
complex user interface than is possible to implement using i Tool framework methods.

What About Using a Ul Panel?

Several of the standard i Tools require tool-specific user interface elements. These
iTools (the IMAGE, IMAP, and IVOLUME tools) include a user interface panel that
contains additional interface elements required by the tool.

If your application requires a small number of interface elements not available in the
standard interface, consider creating a user interface panel rather than an entire
custom user interface. Creating a user interface panel rather than a custom user
interface has the following advantages:

* Itiseasier, and requires lessinterface code. You do not need to write code to
handle widget resizing, for example.

* You can register your user interface panel with the iTool system, which alows
the panel to appear on any iTool of the type supported by the panel. You could,
for example, create a panel that would show up on the standard IIMAGE tool,
along with the existing panel.

User interface panels are discussed in detail in Chapter 14, “Creating a User Interface
Panel”.

Skills Required to Create an iTool User Interface
To create a custom iTool user interface, you will need to be familiar with the
following:

e Traditional IDL widget programming (see Chapter 29, “Creating Widget
Applications’ in the Building IDL Applications manual).

e Creating an iTool (see Chapter 5, “Creating an iTool”).

« Creating user interface callback routines (see Chapter 14, “Creating a User
Interface Panel”).

* Routines and methods available for interacting with i Tool components from
outside the iTool framework (see Appendix A, “Controlling i Tools from the
IDL Command Line").

iTool Developer’s Guide About Custom iTool Widget Interfaces

334 Chapter 15: Creating a Custom iTool Widget Interface

e Useof theiTool compound widgets (see Appendix B, “iTool Compound
Widgets').

What You Will Need to Create

To build acustom iTool user interface, you will need to create aminimum of two new
. profiles

e Thewidget interface definition. Thisfile creates the widget interface, defines
event handlers and callbacks, takes care of widget resizing and cleanup, and
registers the widgets with a user interface object.

* A launchroutine. Thisfile registers the custom interface with the iTools
system and launches the iTool with the specified interface.

You may create any number of other additional files, but in most cases you will also
create:

e AniTool class definition routine. Thisfile creates an instance of theiTool that
will use your custom interface. TheiTool class definition may simply subclass
an existing iTool class, registering new items or unregistering some of the
standard items, or it may be an entirely new iTool of your creation.

Note
While you can create an iTool interface that mimics an existing application’s
traditional widget interface, you cannot simply add iTool compound widgets to an
existing widget interface. The iTool compound widgets rely on the iTool system,
and will not function on their own.

About Custom iTool Widget Interfaces iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 335

Overview: Creating an iTool Interface

This section provides a brief outline of the steps necessary to create a custom i Tool
interface. Thetopicsintroduced here are discussed in greater detail in later sections of
this chapter.

To create a custom i Tool interface, you will do the following:
Create or Choose an iTool

Create the Widget Interface

Create Event Handlers

Create Callback Routines

Create a Cleanup Routine

Create an iTool User Interface Object

N o g w D PE

Create an iTool Launch Routine
Create or Choose an iTool

Theinterface you will createis the interface to aniTool. While you may choose to
create a new interface to an existing iToal, it is more likely that you will be creating
an interface to a custom iTool that you have defined. Even if you simply want to
insert aniTool draw window into an existing widget interface, you will probably want
to specify which of the standard iTool operations, menu items, and toolbars are
included — this means creating and registering a new iTool definition routine. See
Chapter 5, “Creating an iTool” for a complete description of the process of creating
your own i Tool.

Create the Widget Interface

You will usetraditional IDL widget programming technigues to create the interface
used by your iToaol. i Tool components such as menus, toolbars, status bars, and i Tool
draw windows are encapsulated in a specia set of compound widgets that you can
add to your interface just like other widgets.

Note
iTool compound widgets are not exactly like other compound widgets. They do not
generate widget events, and you cannot get or set their values using the
WIDGET_CONTROL routine.

iTool Developer’s Guide Overview: Creating an iTool Interface

336 Chapter 15: Creating a Custom iTool Widget Interface

Create Event Handlers

While you do not need to handle the widget events that are interna to theiTool
compound widgets, you will need to create event handlers for any other widgets you
include in your interface. You will aso need to provide event-handling code for the
following:

¢ Resizing of theiTool compound widgets. Thisis generally accomplished by
calling the _RESIZE procedure associated with the compound widget.

e Destruction of theiTool. In order to properly shut down the iTool system when
your iTool exits, you must call the iTools shutdown service in addition to
freeing any pointers used by the widget interface.

e Focus changes. TheiTool system needs to know which iTool is currently
selected. When your user interface receives the keyboard focus, you must call
the iTools set-as-current-tool service to alert the system that the i Tool
associated with your interface has become the current tool.

Create Callback Routines

Callback routines handle messages delivered by the iTool messaging system to your
user interface. The number and type of callbacks your interface needs to handle will
depend on the features your user interface implements.

Create a Cleanup Routine

If your custom interface uses pointers or other variables that require explicit cleanup
when the application exits, you must provide a cleanup routine and specify it as the
routine to be called when the widgets are destroyed.

Create an iTool User Interface Object

iTools communicate with their user interfaces via a user interface object. Your
interface definition routine will need to create an interface object, register the widgets
with the object, and add the widget interface as an observer of the user interface
object.

Create an iTool Launch Routine

After creating the user interface definition routine, you will need to create aniTool
launch routine that does the following (in addition to any other work):

Overview: Creating an iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 337

* Registersyour custom user interface with the iTool system, using the
ITREGISTER procedure with the USER_INTERFACE keyword.

e CallstheIDLITSYS CREATETOOL function with the USER_INTERFACE
keyword set equal to the name of your custom interface, as registered with the
iTool system.

iTool Developer’s Guide Overview: Creating an iTool Interface

338 Chapter 15: Creating a Custom iTool Widget Interface

ITool Widget Interface Concepts

It is beyond the scope of this chapter to discuss the creation of IDL widget interfaces
in general; see Chapter 29, “Creating Widget Applications’ in the Building IDL
Applications manual for a complete discussion. This section describes some things
you will need to know about working with the iTool compound widgets that
encapsulate the iTool components you can insert into your custom interface.

What Are iTool Compound Widgets?

iTool compound widgets are designed to allow complex iTool components to be
included in an IDL widget interfacein away that isfamiliar to traditional IDL widget
programmers. The following iTool compound widgets are available:

CW_ITMENU — Encapsulates a top-level iTool menu. Top-level iTool menus are
defined by adding operationsto the iTool hierarchy. See “iTool Object Hierarchy” on
page 30 for information on the organization of the iTool hierarchy.

CW_ITPANEL — Encapsulates an iTool user interface panel. User interface panels
allow you to easily add additional IDL widget interface elementsto an iTool. In some
cases, you may be able to accomplish what you need by adding a user interface panel
rather than creating an entire custom user interface. See Chapter 14, “Creating a User
Interface Panel” for information on creating panels.

CW_ITTOOLBAR — Encapsulates the iTool toolbar. Toolbars provide access to
commonly used operations and manipulators viatoolbar buttons. Toolbars are
defined by adding operationsto the iTool hierarchy. See “iTool Object Hierarchy” on
page 30 for information on the organization of the iTool hierarchy.

CW_ITSTATUSBAR — Encapsulates the iTool status bar. The status bar typically
provides user feedback for iTool components, but can be use to display any sort of
message. See “ Status Messages’ on page 287 for information on using the status bar.

CW_ITWINDOW — Encapsulates the iTool drawable area. All of the functionality of
the standard i Tool window — mouse interactions, display of properties of the
selected visualization, context menus — isincluded in the iTool drawable area.

Special Notes on the iTool Compound Widgets

TheiTool compound widgets are designed to look and behave like traditional
compound widgets in most ways, but there are several things you should be aware of
when using them.

iTool compound widgets:

iTool Widget Interface Concepts iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 339

e reguire an object reference to an iTool user interface object on creation.
¢ do not generate widget events.
¢ do not have a value that can be retrieved or set.

e areableto receive and respond to selected messages from the i Tool messaging
system.

In addition, the CW_ITPANEL, CW_ITSTATUSBAR, and CW_ITWINDOW
compound widgets must be resized using their associated RESIZE procedures,
rather than by explicitly setting the XSIZE and Y SIZE keywords.

Example iTool Widget Interfaces

Two examples of functioning iTool widget interface code are included in the IDL
distribution:

Example Custom iTool Widget Interface — A functioning custom i Tool widget
interface definition, an associated i Tool class definition, and an associated launch
routine are included in the exanpl es/ doc/ i t ool s subdirectory of the IDL
distribution. The example interface is described in detail in “Example: a Custom
iTool Interface” on page 360.

Standard iTool Widget Interface — The widget interface code used as the standard
iTool interfaceisincluded in the IDL distribution in thefilei dl i t wdt ool . pro,in

thel i b/ it ool s/ ui _wi dget s subdirectory. The standard interfaceis used by all of
the iTools included with IDL. Inspecting this file will give you insights into how the
developers of the standard i Tool s intended the i Tool compound widgets to be used, as
well as other details.

iTool Developer’s Guide iTool Widget Interface Concepts

340 Chapter 15: Creating a Custom iTool Widget Interface

Creating the Interface Routine

The IDL procedure that creates your custom iTool widget interface will look much
like awidget creation routine from atraditional widget application. This section
points out some things you should be aware of.

Note
Code fragments used in this section, and those that follow, are taken from the
example custom interface developed in “ Example: a Custom iTool Interface” on
page 360.

Routine Signature

Your widget creation routine should be an IDL procedure with a signature that |0oks
something like:

PRO exanpl e2_wdt ool , oTool, TITLE = titleln, $
LOCATION = location, $
VI RTUAL_DI MENSI ONS = vi rtual Di nensi ons, $
USER | NTERFACE = oU, $; output keyword
REF EXTRA = _extra

where:
e oTool isan object reference to theiTool that will use the interface.
e TITLEisanoptional keyword that specifiesthetitle used for the iTool window.

e LOCATI ONisan optiona keyword that specifiesthe location [X, y] in pixelson
the screen where the upper left corner of the interface should be positioned on
creation.

e VI RTUAL_DI MENSI ONS is an optiona keyword that specifies the virtual size
of theiTool drawable area. Note that this size is not the same as the initid
visible size.

e USER_| NTERFACE isarequired output keyword that returns an object
reference to the iTool user interface object created by the interface routine.

e _REF_EXTRAIisthe standard keyword inheritance mechanism that allows the
routine that calls your user interface routine to pass additional keyword values
to the interface routine as needed.

Your routine may handle other keyword values as well.

Creating the Interface Routine iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 341

Error Checking

Since the successful creation of an iTool interface relies on the presence of avalid
iTool object reference, it isagood ideato check the oTool argument before
proceeding. A statement like the following serves as a reasonable check:

| F (~OBJ_VALID(oTool)) THEN $
MESSAGE, 'Tool is not a valid object.’

Top Level Base

The first widget you will need to create when building a custom i Tool widget
interface is atop-level widget base to hold the interface. Your call to the
WIDGET_BASE function should look something like:

wBase = W DGET_BASE(/ COLUWN, MBAR = wienubar, $

TITLE = title, $

/ TLB_KI LL_REQUEST_EVENTS, $

/ TLB_SI ZE_EVENTS, $

/ KBRD_FOCUS_EVENTS, $

_EXTRA = _extra)
All of the keywords shown here are documented along with the WIDGET_BASE
function, but you should note the following things:

¢ Weusethe MBAR keyword to create a menubar base, which will hold both the
iTool menubars and any additional menus we choose to create. If your
interface will not have a menu bar, there is no need to specify the MBAR
keyword.

« Weexplicitly ask for TLB_KILL_REQUEST _EVENTS. Thisisimportant
becauseit allows us to specify aKILL_NOTIFY procedure that will be
executed when the widget interface is destroyed.

e Wesetthe TLB_SIZE_EVENTS keyword to let the user resize theiTool
interface as described in “Handling Resize Events’ on page 354.

¢ We use the keyword inheritance mechanism (the _EXTRA keyword) to pass
any additional keyword values through to the base widget.

User Interface Object

Your widget interface must be associated with an iTool user interface object. Since
we will need the object reference to the user interface object when creating the iTool

iTool Developer’s Guide Creating the Interface Routine

342

Chapter 15: Creating a Custom iTool Widget Interface

compound widgets, we include the following statement after creating our top level
base widget:

oU = OBJ_NEW'IDLitU"', oTool, GROUP_LEADER = wBase)
Note that we need the iTool object that was the argument to our interface creation
routine to create the user interface object. Note also that we specify our top level base

asthe GROUP_LEADER of the interface abject; thiswill ensure that any floating or
modal dialogs displayed by the interface appear in the correct place.

Widget Creation and Layout

Your custom iTool interface can include both iTool compound widgets and traditional
IDL widgets. These are created in the same way asin atraditional widget application.
The finer points of creating i Tool compound widgets are discussed in later sections of
this chapter.

User Interface Registration

Near the end of the widget creation routine, after the widget hierarchy has been
realized, we must register the top-level base with the user interface object:

nyl D = oUl - >Regi st er Wdget (wBase, 'Exanple 2 Tool', $

" exanpl e2_wdt ool _cal | back")

Here we specify the name of the callback routine that will handle messages from the
iTool components. The return value from the RegisterWidget method isthe i Tool full
identifier of the widget interface. We next use the identifier to specify that the
interface is an observer (that is, that it can receive messages generated by iTool
components) for the associated iTool:

oUl - >AddOnNot i fyQoserver, nyl D, oTool ->Get Ful |l I dentifier()

This ensures that messages generated by the iTool are handled by the specified
callback routine.

Handling Widget Destruction

Many complex interfaces rely on a state structure containing information about the
widgetsin the interface. If you pass a reference to this state structure between
routines in your user interface code using one or more pointers, free the pointers
when the widget interface is destroyed. In our exampleinterface, a pointer to the state
structureis stored in the user value of the first child widget of the top level base
widget. The following statement specifies aroutine to be called when the widgets are
destroyed:

Creating the Interface Routine iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 343

W DGET_CONTROL, wChild, KILL_NOTIFY = "exanpl e2_wdt ool _cl eanup"

| ssues related to the destruction of the interface are discussed in more detail in
“Handling Shutdown Events’ on page 356.

iTool Developer’s Guide Creating the Interface Routine

344

Chapter 15: Creating a Custom iTool Widget Interface

Adding Menus

iTool menus are created using the CW_ITMENU compound widget. The signature of
the CW_ITMENU functionis:

Result = CW_ITMENU(Parent, Ul, Target [, KEYWORDS])
where;

* Parentisthewidget ID of the base widget on which the menu will be
displayed.
e Ul isthe user interface object associated with the interface.

e Target istheiTool identifier, relative to the iTool associated with Ul, of the
container whose operations should be included in the menu.

« KEYWORDSare keywords either handled explicitly by the widget, or passed
through to the widgets that make up the compound widget.

Standard Menus

Operations registered in the iTool containers that create the standard menus are
automatically sensitized and desensitized to reflect whether the individual operation
can be applied at the time the menu is displayed. Some items are sensitized when the
selected item is of the correct data or visualization type, others (such as Undo and
Redo) are sensitized when some other criteria are met. Still others (such as the Open
operation on the Fi | e menu) are always available.

The following statements create the menus used by the standard i Tools:

wFi | e = CW.I TMENU(wMEenubar, oUl, 'Operations/File')

WEdi t = CW.I TMENU(wiVenubar, oUl, 'Operations/Edit')

W nsert = CW.I TMENU(wiVenubar, oUl, 'Operations/Insert')
wOper ations = CW.I| TMENU(wMVenubar, oUl, ' Operations/CQperations')
WW ndow = CW.I TMENU(wivenubar, oUl, ' Operations/ W ndow)
wHel p = CW.I TMENU(wivenubar, oUl, 'Operations/Help')

You can include any subset of these menus, or your own menus, in your interface.

Modifying Menu Contents

Each iTool menu contains an entry for each item that is registered in the container.
This has two ramifications:

Adding Menus iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 345

1. If you register a new operation in one of the standard menu containers, it will
appear on the menu for your iTool, and be sensitized and desensitized
according to the same rules as the other items.

2. If you unregister an operation from one of the standard menu containers, it will
be removed from the menu for your iTool.

Operations are generally registered and unregistered in the Init method of an iTool
creation routine. See Chapter 7, “Creating an Operation” for details. For an example
that shows how to unregister standard menu items, see “Example: a Custom iTool
Interface” on page 360.

Resizing Menus

Because menubars are treated as part of the top level base widget, no special resizing
codeisrequired to resize menus. If you are concerned that your menus always appear
inasingle line, you may want to consider setting a minimum width on your top level
base sufficient to ensure that the menus never wrap to a second line.

iTool Developer’s Guide Adding Menus

346

Chapter 15: Creating a Custom iTool Widget Interface

Adding a Toolbar

iTool toolbars are created using the CW_ITTOOLBAR compound widget. The
signature of the CW_ITTOOLBAR function is:

Result = CW_ITTOOLBAR(Parent, Ul, Target [, KEYWORDS])
where;

» Parentisthewidget ID of the base widget on which the toolbar will be
displayed.
e Ul isthe user interface object associated with the interface.

e Target istheiTool identifier, relative to the iTool associated with Ul, of the
container whose operations or manipul ators should be included in the toolbar.

« KEYWORDSare keywords either handled explicitly by the widget, or passed
through to the widgets that make up the compound widget.

Standard Toolbars

Operations registered in the iTool containers that create the standard toolbars are
automatically sensitized and desensitized to reflect whether the corresponding
operation or manipulator is currently available. Some items are sensitized when the
selected item is of the correct data or visualization type, others (such as Undo and
Redo) are sensitized when some other criteria are met. Still others (such astheFi | e
Open operation) are aways available.

The following statements create the toolbars used by the standard i Tools:
wTool bar = W DGET_BASE(wBase, /ROW XPAD=0, YPAD=0, SPACE=7)

wlool 1 = CW. I TTOOLBAR(wTool bar, oUl, 'Toolbar/File')

wlool 2 = CW I TTOOLBAR(wTool bar, oU, 'Tool bar/Edit')

wlool 3 = CW I TTOOLBAR(wTool bar, oUl, ' Manipul ators', /EXCLUSI VE)
wTool 4 = CW.I TTOOLBAR(wTool bar, oU, 'Manipulators/View ,$

| EXCLUSI VE)

wlool 5 = CW I TTOOLBAR(wTool bar, oUl, ' Tool bar/View)

wTlool 6 = CW.| TTOOLBAR(wTool bar, oUl, ' Manipul ators/Annotation', $
| EXCLUSI VE)

There are a couple of points to note:

« Some of the standard operations displayed as toolbar buttons are proxies to
operations that are registered in other containers. For example, the
Tool bar/ Fi | e container contains proxiesto four of the operations registered

Adding a Toolbar iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 347

inthe Oper at i ons/ Fi | e container: New, Open, Save, and Pri nt . Proxies
are described in “Registering Components’ on page 37.

e« The EXCLUSIVE keyword is passed through the CW_ITTOOLBAR function
to the underlying widget base via the keyword inheritance mechanism. See the
description under WIDGET_BASE for details.

Modifying Toolbar Contents

Each iTool toolbar contains an entry for each item that is registered in the container.
This has two ramifications:

1. If youregister (or proxy) anew operation or manipulator in one of the standard
toolbar containers, it will appear on the toolbar for your iTool, and be
sensitized and desensitized according to the same rules as the other items.

2. If you unregister an operation or manipulator from one of the standard toolbar
containers, it will be removed from the toolbar for your i Tool.

Operations and manipulators are generally registered and unregistered in the Init
method of an iTool creation routine. See Chapter 7, “ Creating an Operation” or
Chapter 8, “Creating a Manipulator” for details. For an example that shows how to
unregister standard toolbar items, see “Example: a Custom iTool Interface” on
page 360.

Resizing Toolbars

Toolbars consist of bitmap buttons that cannot be resized, so no special resizing code
isrequired. If you are concerned that al of your toolbars appear even if the user
resizes the top level base widget to awidth too narrow to display them al, you can
either set a minimum width for the top level base or write resizing code that arranges
the toolbars into multiple rows if the top level base is not wide enough.

iTool Developer’s Guide Adding a Toolbar

348 Chapter 15: Creating a Custom iTool Widget Interface

Adding an iTool Window

AniTool drawable area, or window, is created using the CW_ITWINDOW compound
widget. TheiTool window can display iTool visualizations and atomic IDL graphics
objects, provides a mechanism for the display of the iTools property sheet interface,
and makes it easy to perform tasksincluding trandation, rotation, and scaling of
visualizations using standard i Tool manipulators. The signature of the
CW_ITWINDOW functionis:

Result = CW_ITWINDOW(Parent, Ul [, KEYWORDS)
where:

e Parent isthewidget ID of the base widget on which the drawable areawill be
displayed.
e Ul isthe user interface object associated with the interface.

« KEYWORDS are keywords either handled explicitly by the widget or passed
through to the widgets that make up the compound widget.

Window Sizing Keywords

Two properties of the iTool window are worth understanding. The DIMENSIONS
keyword specifies the visible area of the window in pixels as atwo-element array
[width, height]. The VIRTUAL_DIMENSIONS keyword specifies the total size of
the drawing areain pixels as atwo-element array [width, height]. These two
keywords replace the XSIZE/Y SIZE and SCR_XSIZE/SCR_Y SIZE keywords to the
standard IDL draw widget. The X_SCROLL_SIZE/Y_SCROLL_SIZE keywords are
likewise unnecessary and ignored; the iTool window automatically handles the
addition of scrollbars when necessary.

Modifying Window Contents
The contents of an iTool window can be modified interactively by the user in

numerous ways:

e using the mouse and one of the available manipulators (trandlate, rotate, scale,
etc.).

« by interactively selecting an available operation from an iTool menu or toolbar.

* by interactively changing a property value using the iTool property sheet.

Adding an iTool Window iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 349

e by interactively importing new data and creating new visualizations using the
iTool Data Import Wizard or Insert Visualization dialog.

These methods are standard to all iTools, and are discussed in the iTool User’'s Guide.
The contents of the iTool window can aso be manipulated programmatically from
“outside” the iTool framework in various ways:

« by applying an operation using the iTool abject’s DoAction method.
* by changing a property value using the iTool object’s DoSetProperty method.

e by importing and visualizing new data, either by calling an iTool creation
routine with the VIEW_NUMBER keyword set to replace the existing
visualization, or by retrieving the iTool dataitem and using its SetData
method.

These programmatic methods for modifying the contents of an existing iTool are
discussed in Appendix A, “Controlling iTools from the IDL Command Line”.

Resizing iTool Windows

The CW_ITWINDOW compound widget defines a separate procedure,
CW_ITWINDOW_RESIZE, that accepts as arguments the new width and height of
the iTool window. This procedure handles all calculations necessary to properly
resize the window, taking into account the current zoom factors and the presence or
absence of scroll bars. See“CW_ITWINDOW?” on page 414 for complete details.

iTool Developer’s Guide Adding an iTool Window

350 Chapter 15: Creating a Custom iTool Widget Interface

Adding a Status Bar

iTool status bars are created using the CW_ITSTATUSBAR compound widget.
Statusbars can be used to display any type of information, but are commonly used to
provide user feedback or information about the item underneath the mouse cursor.
See “ Status Messages’ on page 287 for additional information on status bars. The
signature of the CW_ITSTATUSBAR function is:

Result = CW_ITSTATUSBAR(Parent, Ul [, KEYWORDS])
where:
e Parent isthewidget ID of the base widget on which the status bar will be
displayed.
¢ Ul isthe user interface object associated with the interface.

« KEYWORDS are keywords either handled explicitly by the widget or passed
through to the widgets that make up the compound widget.

Modifying Status Bar Contents

In many cases, the contents of the status bar are updated automatically based on the
position of the mouse pointer, selected manipulator, or other condition. You can
programmatically update the contents of a status bar using the StatusM essage and
ProbeStatusM essage methods of the IDLitIMessaging class as described in “ Status
Messages’ on page 287.

Resizing Status Bars

The CW_ITSTATUSBAR compound widget defines a separate procedure,
CW_ITSTATUSBAR_RESIZE, that accepts as an argument the new width of the
status bar. This procedure handles all calculations necessary to properly resize the
status bar, taking into account the number of status bar segments present and any
padding used. See“CW_ITSTATUSBAR” on page 406 for complete details.

Adding a Status Bar iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 351

Adding a User Interface Panel

iTool user interface panels are created using the CW_ITPANEL compound widget.
User interface panels can be used to display a selection of widgets in atab interface
on one side of the iTool interface.

Note
If you are creating a custom iTool user interface that includes both regular IDL
widgets and iTool compound widgets in a standard base widget, it is unlikely that
you will also need to create a user interface pandl. (If you want your interface to
display other panels that are registered with the iTool system, such as the image,
map, or volume panels, you must include a CW_ITRPANEL widget.) Conversely,
you may be able to avoid creating an entire custom user interface if you can place
the extrawidget controls you need on a user interface panel, which requires
significantly less code. See Chapter 14, “Creating a User Interface Panel” for
information on creating a user interface panel that can be displayed with your iTool.

The signature of the CW_ITPANEL function is:

Result = CW_ITPANEL (Parent, Ul [, KEYWORDS))

where:
e Parentisthe D of the base widget on which the panel will be displayed.
¢ Ul isthe user interface object associated with the interface.
« KEYWORDSare keywords either handled explicitly by the widget or passed

through to the widgets that make up the compound widget.
Modifying User Interface Panel Contents

The contents of a user interface panel can be modified based on the current state of
theiTool via one or more callback routines, as described in Chapter 14, “ Creating a
User Interface Panel”.

Resizing User Interface Panels

The CW_ITPANEL compound widget defines a separate procedure,
CW_ITPANEL_RESIZE, that accepts as an argument the new height of the panel.
This procedure handles all calculations necessary to properly resize the panel, taking
into account the fact that panels can themselves include scrolling base widgets. See
“CW_ITPANEL"” on page 403 for complete details.

iTool Developer’s Guide Adding a User Interface Panel

352 Chapter 15: Creating a Custom iTool Widget Interface

Handling Callbacks

User interface callback routines are executed when an iTool component, for which
the user interface has created an observer, generates a notification message. The
callback routine then uses the value of the notification message to determine what
action to take. Observers are created as described in “User Interface Registration” on
page 342. The iTool messaging system itself is discussed in “iTool Messaging
System” on page 40.

Callback Routine Signature

A user interface widget callback routine has the following signature:
PRO W dget Nane_cal | back, Wdget, 1dOriginator, |dMessage, Val ue
where:
« WidgetName_callback is the name of the callback routine.
* Widget isthe widget ID of the widget registered as an observer.

e IdOriginator is astring identifying the source of the message (usually the
object identifier of aniTool component object, but it can be any string value).

¢ ldMessageisastring that uniquely identifies the message being sent.

¢ \Valueisavaluethat is associated with the message being sent.
See “iTool Messaging System” on page 40 for more information on the |dMessage
and Value arguments.

Registration of Callback Routines

Callback routines are registered along with the user interface itself, in the call to the
RegisterWidget method of the IDLitUI object. See “User Interface Registration” on
page 342 for details.

Example Callback Routine

The following code segment illustrates a simple callback routine used in both the

i dl i twdtool . pro interface and in the example custom interface developed later in
this chapter. This callback handles only one message, FILENAME, whichis
generated when the user saves the current iTool with a new file name. When the
callback is executed, thetitle bar of theiTool interface is updated to reflect the new
file name.

Handling Callbacks iTool Developer’s Guide

iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface

PRO exanpl e2_wdt ool _cal | back, wBase, strlD, nessageln, userdata

; Retrieve a pointer to the state structure.
wChi | d = W DGET_I NFQ(wBase, /CHI LD)
W DGET_CONTROL, wChild, GET_UWVALUE = pState

; Handl e the nmessage that was passed in.
CASE STRUPCASE(messagel n) OF

" FI LENAME' : BEG N
fil ename = FI LE_BASENAME(user dat a)

newTitle = (*pState).title + "' ['" + filename + ']’
W DGET_CONTROL, wBase, TLB _SET_TITLE = newTitle
END
ELSE: ; Do nothing
ENDCASE

353

Your callback routine may be more complex, handling any number of messages sent
to the user interface. In practice, the callback routine for a user interfaceis often quite
simple— the standard user interface used by theiToolsin IDL 6.1 handlesonly three

messages.
Note

Your callback routine is also free to quietly ignore any messages. For example, you

may choose to do nothing when the FILENAME message is received.

Handling Callbacks

354 Chapter 15: Creating a Custom iTool Widget Interface

Handling Resize Events

It is beyond the scope of this chapter to discuss resizing of widget interfacesin
general; see “Widget Sizing” in Chapter 30 of the Building IDL Applications manual
for adiscussion of widget sizing issues. This section describes some things you will
need to know in order to make your custom i Tool widget interface resize properly.

Generating Resize Events

If you want usersto be able to resize the custom iTool interface you are creating, you
must set the TLB_SIZE EVENTS keyword when creating the top-level widget base
that holds your interface. With this keyword set, when the user resizes the top-level
base, a WIDGET_BASE event is generated, reporting the new width and height of
the base widget.

Handling the Resize Event

The technique used by the standard i Tool widget interface to handle resize events for
the top-level base involves storing the current size of the base widget in the widget's
state structure. The state structure is available to widget event handling and callback
routines in the user value of the first child widget of the top-level base.

The following code, from the event handling routine in the exanpl e2_wdt ool . pro
interface definition (developed in “ Example: a Custom iTool Interface” on page 360),
usesthe value stored in the basesi ze field of the state structure, along with the new
size of the base widget, to calculate the change in the size of the base. The changesin
the size are then passed as arguments to the EXAMPLE2 WDTOOL_RESIZE
routine, which handles the actual resizing of the interface elements.

; The top-level base was resized
"W DCGET_BASE' : BEG N
; Conpute the size change of the base relative to
; its cached forner size.
W DGET_CONTROL, event.top, TLB_GET_SIZE = newSi ze
deltaW = newSi ze[0] - (*pState).basesize[0]
deltaH = newSi ze[1] - (*pState).basesize[1]
exanpl e2_wdt ool _resi ze, pState, deltaW deltaH
END

Writing a Resize Routine

Writing aresizing routine for your custom iTool user interface may be the most
complicated part of the task. Each interface is different, and resize events must be

Handling Resize Events iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 355

handled based on the layout and desired behavior of the interface. Aside from the
techniques discussed in “Widget Sizing” in Chapter 30 of the Building IDL
Applications manual, keep the following in mind when writing your resizing routine:

e Usethesupplied*_RESIZE procedures defined by theiTool compound widget
routines to resize the compound widgets, when they are available. See the
reference pages for the CW_IT* widgets for details.

* Widget sizing is handled differently on Windows and UNIX platforms.
Specifically:

e On Windows platforms, turn off widget updating (viathe UPDATE
keyword to WIDGET_BA SE) while widgets areresizing. This helps
prevent flashing.

* OnUNIX platforms, make sure updating is turned on while resizing, to
ensure proper resizing.

e |f you are storing the size of your base widget in the interface’s state structure,
be sure to update the values in the state structure after the interface has been
resized.

iTool Developer’s Guide Handling Resize Events

356 Chapter 15: Creating a Custom iTool Widget Interface

Handling Shutdown Events

Because your custom interface is associated with an i Tool, destruction of the interface
may entail shutting down and cleaning up the entireiTools system. Thismeansthat in
addition to normal cleanup of pointers and objects used by the interface, you will
need to instruct the iTools system to shut itself down when your interfaceis
destroyed.

Generating Shutdown Events

You must set the TLB_KILL REQUEST EVENTS keyword when creating the top-
level widget base that holds your interface. With this keyword set, when the user
destroys the top-level base, aWIDGET_KILL_REQUEST event is generated,
allowing you to perform the actions necessary to shut down the iTools system.

Handling the Shutdown Event

When the user destroys the top-level base of your custom interface, you may want to
prompt the user to save the current iTool state before shutting down. The standard
iTool interface uses an iTool system service named “ Shutdown” to both prompt the
user for confirmation that a shutdown is requested and offer to let the user save the
current state. The Shutdown service then handles other cleanup tasks before exiting
theiTool.

Thefollowing code, from the event handling routinein the exanpl e2_wdt ool . pro
interface definition (developed in “ Example: aCustom iTool Interface” on page 360),
callstheiTools Shutdown service.

Destroy the w dget.
"W DGET_KI LL_REQUEST': BEG N
; Get the shutdown service and call DoActi on.
; This code nust be here, and not in the _cleanup routine,
because the tool may not actually be killed. (For exanple
; the user may be asked if they want to save, and they nay
hit "Cancel" instead.)
IF OBJ_VALID((*pState).oU) THEN BEG N
oTool = (*pState).oUl ->Cet Tool ()
oShut down = oTool - >CGet Ser vi ce(' SHUTDOMW')
void = (*pState).oU ->DoActi on(oShut down->get Ful | I dentifier())
ENDI F
END

Your code should not assume that the top-level base widget will actually be
destroyed, because the user may decide to cancel the close operation. Since the

Handling Shutdown Events iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 357

process of actually destroying the widget hierarchy is divorced from the generation of
the WIDGET_KILL_REQUEST event, you may also need to supply a cleanup
routine that is invoked only when the widget hierarchy is actually destroyed.

Writing a Cleanup Routine

A cleanup routine is necessary if your widget interface uses heap variables (pointers
or objects) to store information about itself — the heap variables will need to be
cleaned up separately when the interface itself is destroyed. The following code, from
the cleanup routine in the exanpl e2_wdt ool . pr o interface definition (devel oped
in “Example: a Custom iTool Interface” on page 360), frees the pointer used to store
the widget interface’s state structure.

PRO exanpl e2_wdt ool _cl eanup, wchild

; Make sure we have a valid w dget |ID.
| F (~WDGET_I NFQ(wChi ld, /VALID)) THEN $
RETURN

; Retrieve the pointer to the state structure, and
; free it.
W DGET_CONTROL, wChild, GET_WALUE = pState
| F (PTR_VALI D(pState)) THEN $
PTR_FREE, pState

END
Calling the Cleanup Routine

Thefina step is to specify when the cleanup routine should be called. Since the user
can cancel out of the shutdown operation, the cleanup routine should only be called
when the widget hierarchy is actually destroyed, not when the
WIDGET_KILL_REQUEST event is handled. We accomplish this by specifying the
cleanup routine as the value of the KILL_NOTIFY keyword to the WIDGET_BASE
function.

In the standard i Tool widget interface and in our example code, we set the
KILL_NOTIFY keyword on the first child widget of the top-level base widget. The
following statement, near the end of the interface definition routine, specifies the
name of the cleanup routine in the exanpl e2_wdt ool . pr o interface definition
(developed in “Example: a Custom iTool Interface” on page 360):

W DGET_CONTROL, wChild, KILL_NOTIFY = "exanpl e2_wdt ool _cl eanup"

iTool Developer’s Guide Handling Shutdown Events

358 Chapter 15: Creating a Custom iTool Widget Interface

Creating an iTool Launch Routine

Once you have created your custom i Tool widget interface, you must create away to
launch an iTool using the interface. To do this, you will most often create a custom
iTool launch routine.

iTool launch routines are discussed in detail in “ Creating an i Tool Launch Routine”
on page 97. This section describes changes you will need to make to an existing
launch routine to cause an i Tool to use your custom widget interface.

Register Your User Interface

To register your new user interface, call the ITREGISTER routine with the
USER_INTERFACE keyword. The following statement registers the example
interface developed in “ Example: a Custom iTool Interface” on page 360:

| TREG STER, ' Exanple2_Ul', 'exanpl e2_wdtool ', /USER | NTERFACE
Here, the example interface is registered with the name “Example2_UI".

Use Your User Interface

Thefinal step isto create an instance of aniTool using your interface. To do this,
specify the USER_INTERFACE keyword to the IDLITSYS CREATETOOL
function. The following statement creates an instance of an example tool using the
example interface:

identifier = IDLI TSYS CREATETOOL(' Exanple 2 Tool',$
VI SUALI ZATION_TYPE = ['Plot'], $
USER_| NTERFACE=' Exanpl e2_U "', $
TITLE = ' Exanpl e i Tool Interface', $
_EXTRA = _extra)

See the iTool launch routine developed in “ Example: a Custom iTool Interface” on
page 360 for aworking example.

Using an Existing iTool Launch Routine

If you first register your iTool interface with the iTool system using the ITREGISTER
procedure, you can specify that your interface be used by an existing iTool launch
routine that accepts the USER_INTERFACE keyword. This allows you to avoid the
need to create a custom launch routine if an existing routine will serve.

For example, if we wanted to use our custom interface with the IPLOT tool, we could
execute the following lines athe IDL command prompt:

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 359
| TREG STER, ' Exanple2_U'"', 'exanpl e2_wdtool', /USER | NTERFACE
| PLOT, USER | NTERFACE=' Exanpl e2_Ul"
These lines will create an iPlot tool using our custom user interface.

This approach may be worthwhile when an existing launch routine handles data
specified on the command line in away that suits your needs. For example, while our
example tool accepts no parameters at the IDL command prompt, specifying our
custom interface as the interface for the iPlot tool allows us to specify data:

| PLOT, EXP(INDGEN(10)), USER | NTERFACE=' Exanpl e2_Ul"

iTool Developer’s Guide Creating an iTool Launch Routine

360 Chapter 15: Creating a Custom iTool Widget Interface

Example: a Custom iTool Interface

This example creates a custom i Tool interface that incorporates several standard IDL
widgets to the | eft of the drawable area and displays a subset of the menus and
toolbars that appear in a standard iTool. A button widget inserts aplot line created
from random data, and several controls allow the user to change the number of points
used to create the line, the line thickness, and the line color. Finally, a button launches

an iTool operation that affects the selected plot data. The finished interface looks like
this:

@l Example iTool Interface [Untitled*]

File Edit Insert Operations ‘Window
o|o| i [le] W] AlNa]o]ele
Inzert Mew Plat

20
[TE T i

Mumber of points

Line Size: | 2 ™
Line Color: |Blue ¥ 0.8
Filter thiz Plot 06

04

02

Click on item to select, or click & drag selection box [173.309]

Figure 15-1. Example Custom iTool Interface

The exampleis purposefully simple. All of the actions accomplished by the custom
interface can be accomplished using the standard i Tool interface. It does, however,
illustrate the concepts necessary to create a custom i Tool interface.

This example consists of threefiles, described in the following sections:
* Widget Interface Creation Routine (Page 361)
e iTool Class Definition Routine (Page 375)
e iTool Launch Routine (Page 376)

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 361

Note
The code for this exampleis provided in the IDL distribution, in the
exanpl es/ doc/ i t ool s subdirectory of the main IDL directory. You can run the
example code directly by entering exanpl e2t ool at the IDL prompt.

Widget Interface Creation Routine

This section describes the widget interface creation routine for the example interface.

Note
The example consists of several routines and is quite long. As aresult, this
discussion dealswith individual chunksand may skip briefly over sectionsthat have
more to do with widget programming and are not explicitly related to the creation of
aniTool interface. To see the routine in its entirety, inspect the file
exanpl e2_wdt ool . pro intheexanpl es/ doc/ i t ool s subdirectory of the IDL
distribution.

Individual routinesin the interface definition are discussed here in the order they
appear in the source file. The routines are:

e example2_wdtool_callback (page 362)
e example2_wdtool_resize (page 363)

e example2_wdtool_cleanup (page 365)
e example2_wdtool event (page 365)

e draw_plot_event (page 367)

* linesize_event (page 368)

e color_event (page 369)

« filter_event (page 370)

e example2_wdtool (page 371)

In our interface definition, we store the state structure for the entire widget interface
in apointer (named pSt at e) that isitself stored in the user value of the first child
widget of thetop-level base widget. Thisisastandard techniquethat allows usto pass
information about the interface between the interface routines. (Handling of widget
state information is discussed in detail in “Managing Application State” and
“Compound Widgets’ in Chapter 29 of the Building IDL Applications manual.) If
you are not familiar with this concept, inspect the exanpl e2_wdt ool routine before
reading the event handling and callback routines.

iTool Developer’s Guide Example: a Custom iTool Interface

362 Chapter 15: Creating a Custom iTool Widget Interface

Note
We store our state variable in the user value of the first child widget, rather than the

user value of the top-level base, as a matter of programming style. You could also
choose to store the variable in the user value of the top-level base.

example2_wdtool_callback

Our example interface handles only one message from the iTool system:
FILENAME. The complete code for the callback routine is shown below.

PRO exanpl e2_wdt ool _cal | back, wBase, strlD, nessageln, userdata

; Make sure we have a valid w dget.
| F (~W DGET_I NFQ{wBase, /VALID)) THEN $
RETURN

; Retrieve a pointer to the state structure.
wChi | d = W DGET_|I NFQ(wBase, /CHI LD)
W DGET_CONTROL, wChild, GET_WALUE = pState

; Handl e the message that was passed in.
CASE STRUPCASE(nmessagel n) OF

The FILENAME nmessage is received if the user saves
; the iTool with a new name. This call back sets the
; title of the iTool to match the name of the file.
"FI LENAMVE' : BEG N

; Use the new filenane to construct the title.

; Renove the path.

filename = FI LE_BASENAME(user dat a)

; Append the filenane onto the base title.

newTitle = (*pState).title + ' [' + filename + ']’

W DGET_CONTROL, wBase, TLB SET TITLE = newTitle
END

O her nessages woul d be handl ed here.
ELSE: ; Do nothing
ENDCASE

END
Discussion

The FILENAME message and the rest of the callback routine are discussed in
“Example Callback Routine” on page 352.

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 363

example2_wdtool_resize

Thewidget resizing routine for our exampleinterface is shown below. It acceptsthree
arguments: a pointer to the widget interface state structure, an integer representing the
change in width (in pixels), and an integer representing the change in height (also in

pixels).

Note
Widget resizing code depends almost entirely on the structure and layout of the
widget interface you are creating. While this example may give you ideas about
how to resize your interface, you will need to change it — probably substantially —
to suit the needs of your interface.

PRO exanpl e2_wdt ool _resi ze, pState, deltaW deltaH

Retrieve the original geonetry (prior to the resize)
; of the iTool draw and tool bar wi dgets.
drawgeom = W DGET_I NFQ((*pSt at e) . wDr aw, / GEOVETRY)
t ool bar Geom = W DGET_| NFQ((*pSt at e) . wTool bar, / GEOVETRY)

; Conpute the updated di mensi ons of the visible portion
of the draw wi dget.

newi sW= (drawgeom xsi ze + deltaW

newi sH = (drawgeom ysi ze + del taH)

;. Check whet her UPDATE is turned on, and save the val ue.
i sUpdate = W DGET_I NFQ((*pSt at e) . wBase, [/ UPDATE)

; Under Unix, UPDATE nust be turned on or wi ndows will
; not resize properly. Turn UPDATE of f under W ndows
; to prevent w ndow fl ashi ng.
IF (! VERSION. OS_FAM LY EQ ' Wndows') THEN BEG N
I F (isUpdate) THEN $
W DGET_CONTROL, (*pState).wBase, UPDATE = 0
ENDI F ELSE BEGA N
; On Unix make sure update is on.
IF (~isUpdate) THEN $
W DCGET_CONTROL, (*pState).wBase, /UPDATE
ENDEL SE

; Update the draw wi dget di nensions.

| F (newi sW NE drawgeom xsi ze || newVi sH ne drawgeom ysi ze) $
THEN BEG N
CW.| TW NDOW RESI ZE, (*pState).wDraw, newvi sW newi sH

ENDI F

iTool Developer’s Guide Example: a Custom iTool Interface

364

Chapter 15: Creating a Custom iTool Widget Interface

Update the wi dth of the tool bar base.
W DCGET_CONTROL, (*pState).wrlool bar, $
SCR_XSI ZE = t ool bar Geom scr_xsi ze+del t aW

Update the status bar to be the same width as the tool bar.
CW | TSTATUSBAR RESI ZE, (*pState).wStatus, $
t ool bar Geom scr _xsi ze+del t aW

Turn UPDATE back on if we turned it off.
| F (isUpdate & & ~W DGET_| NFQ((*pSt ate) . wBase, /UPDATE)) THEN $
W DGET_CONTROL, (*pState).wBase, /UPDATE

Retrieve and store the new top-1level base size.
IF (WDCET_I NFQ((*pSt at e) . wBase, /REALI ZED)) THEN BEG N
W DCGET_CONTROL, (*pState).wBase, TLB GET_SI ZE = basesi ze
(*pState). basesi ze = basesi ze
ENDI F

END
Discussion

Our code resizes only three widgets when the size of the top-level base changes: the
i Tool window, the toolbar, and the status bar. The toolbar and status bar are resized to
fit the new width of the top-level base, and the iTool window is made larger or
smaller by the same amount as the top-level base. This preserves the overall
arrangement of the interface elements, and does not change the width of the left-hand
base, which holds the “custom” interface elements.

Note the handling of the UPDATE keyword. This is necessary because UNIX and
Microsoft Windows behave differently as the top-level base is being resized.

Note aso that we usethe CW_ITWINDOW_RESIZE and CW_ITSTATUSBAR_RESIZE
proceduresto resize theiTool window and status bar widgets. These routines handle the
details of interna resizing of the compound widgets, and perform other necessary
adjustments. The width of the toolbar isresized in amore traditiona way, by setting the
SCR_XSIZE on the base widget that holds the individua toolbars.

Finally, we store the new size of the top-level base in the basesize field of the widget
interface’s state structure. Storing this value in the state structure allows usto
calculate the change in size of the top-level base in when the WIDGET_BASE event
arrivesin our event-handler routine.

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 365

example2_wdtool_cleanup

The cleanup routine for our interfaceis simple; it frees the pointer used to hold the
widget interface’s state structure. The complete code for the cleanup routine is shown
bel ow.

PRO exanpl e2_wdt ool _cl eanup, wchild

Make sure we have a valid w dget |D.
| F (~W DGET_I NFQ(wChi | d, /VALID)) THEN $
RETURN

Retrieve the pointer to the state structure, and
free it.

W DGET_CONTROL, wChild, GET_WALUE = pState

IF (PTR_VALID(pState)) THEN $
PTR_FREE, pState

END
Discussion

Note that thisroutineis only called when the widget interface is actually destroyed,
not when the WIDGET_KILL_REQUEST event is processed. See “Handling
Shutdown Events’ on page 356 for details.

example2_wdtool_event

The main event-handling routine for our widget interface handles three types of
events that might be generated by the top-level base widget:

e WIDGET_KILL_REQUEST (generated when the user requests that the
application be exited).

e WIDGET_KBRD_FOCUS (generated when the user selects the application).
« WIDGET_BASE (generated when the user resizes the top-level base widget.

A more complicated interface may handle additional events; the techniques used
would be similar to those illustrated here. The complete code for the main event-
handler routine is shown below.

PRO exanpl e2_wdt ool _event, event
Retrieve a pointer to the state structure.
wChi ld = WDGET_I NFQ(event . handl er, /CH LD)
W DGET_CONTROL, wChild, CGET_UWVALUE = pState

CASE TAG _NAMES(event, /STRUCTURE_NAME) OF

iTool Developer’s Guide Example: a Custom iTool Interface

366 Chapter 15: Creating a Custom iTool Widget Interface

; Destroy the wi dget.
"W DGET_KI LL_REQUEST' : BEG N
Get the shutdown service and call DoAction.
; This code must be here, and not in the _cleanup routine,
; because the tool may not actually be killed. (For exanple
the user may be asked if they want to save, and they may
; hit "Cancel" instead.)
IF OBJ_VALID((*pState).oU) THEN BEG N
oTool = (*pState).oU ->Get Tool ()
oShut down = oTool - >Cet Servi ce(' SHUTDOMN)
voi d=(*pState). oU - >DoActi on(oShut down->get Ful | | dentifier())
ENDI F
END

1

Focus change.
" W DGET_KBRD_FOCUS' : BEG N
If the i Tool is gaining the focus, Get the set current tool
: service and call DoActi on.
I F (event.enter &% OBJ_VALID((*pState).oU)) THEN BEG N
oTool = (*pState).oU ->Get Tool ()
oSet Current = oTool ->Get Servi ce(' SET_AS_CURRENT_TOOL')
voi d = oTool - >DoActi on(oSet Current->CetFull I dentifier())
ENDI F
END

)

; The top-level base was resized.

"W DGET_BASE' : BEG N

Conput e the size change of the base relative to
; its cached forner size.

W DGET_CONTROL, event.top, TLB_GET_SIZE = newSi ze
deltaW = newSi ze[0] - (*pState).basesize[O0]
deltaH = newSi ze[1] - (*pState).basesize[1]

exanpl e2_wdt ool _resi ze, pState, deltaW deltaH
END

)

ELSE: ; Do nothing
ENDCASE

END
Discussion

Two of the three events handled in this routine are discussed in earlier sections of this
chapter. See “Handling Resize Events’ on page 354 for details on the
WIDGET_BASE event and “Handling Shutdown Events’” on page 356 for details on
the WIDGET_KILL_REQUEST event.

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 367

The WIDGET_KBRD_FOCUS event arrives when the user clicks “into” or “out of”
the widget interface. We are concerned only with events generated when the user
selects the widget interface, because in this case we need to inform the iTool system
object that our iTool has become the “current” tool. To do this, we check the value of
theent er field of the widget event structure; if it containsa 1 (one), we know that
the user has clicked “into” the interface.

Next, we check to make sure that the user interface object stored inthe oUl field of
the widget interface state structureis still valid. If the object isvalid, weretrieve a
reference to the i Tool object using the user interface object’s GetTool method. We use
the iTool object reference to retrieve an object reference to the

SET_AS CURRENT_TOOL service, and call theiTool object’s DoAction method
with the full identifier of the service.

draw_plot_event

The draw_plot_event routine is specified as the event handler for the “Insert New
Plot” button in the custom section of the interface. The routine checks the values of
the other widgets in the custom interface and uses the IPLOT routine to generate a
new plot linein our iTool window. The complete code for this event-handler routine
is shown below.

PRO draw_pl ot _event, event

Retrieve a pointer to the state structure.
wChild = WDGET_I NFQ(event . top, /CH LD)
W DGET_CONTROL, wChild, GET_UVALUE = pState

CGet the i Tool identifier and make sure our i Tool
is the current tool.

toolID = (*pState).oTool ->Cet Ful | I dentifier()

| TCURRENT, tool D

Define sone |ine colors.
colors =[[0,0,0],[255,0,0], [0, 255,0], [0,0, 255]]

Get the value of the Iine color droplist and use it

to select the line color.
linecolor = WDGET_I NFQ((*pSt at e) . wLi neCol or, /DROPLI ST_SELECT)
newcol or = col ors[*,|inecol or]

Get the value of the "nunber of points" slider.
W DGET_CONTROL, (*pState).wSlider, GET_VALUE=points

Get the value of the line size droplist.
l'inesize = WDGET_I NFO((*pSt ate).wLi neSi ze, /DROPLI ST_SELECT) +1

iTool Developer’s Guide Example: a Custom iTool Interface

368 Chapter 15: Creating a Custom iTool Widget Interface

; Call IPLOT to create a plot of random val ues, replacing the
; data used in the i Tool's w ndow.
| PLOT, RANDOMJ seed, points), THI CK=linesize, $

COLOR=newcol or, VI EW NUVBER=1

END
Discussion

This routine uses mostly standard widget programming techniques. Two points are
worth noting, however:

1. We must be surethat our iTool is set as the current tool. To do this, weretrieve
our iTool’sidentifier using the object reference stored in the widget interface’s
state structure and the GetFullldentifier method. Next, we use the
I TCURRENT routine with the full identifier to make sure our tool is current.

2. When we call the IPLOT routine to generate the new plot, we set the
VIEW_NUMBER keyword equal to 1 (one). Thisreplacesthe datain the first
(and in our case, only) view in the tool with the data specified.

linesize event

Thelinesize_event routine is specified as the event handler for the Line Size droplist
in the custom section of the interface. The complete code for this event-handler
routine is shown below.

PRO | i nesi ze_event, event

; Retrieve a pointer to the state structure.
wChild = WDGET_I NFQ(event .t op, /CH LD)
W DGET_CONTROL, wChild, GET_WALUE = pState

CGet the i Tool identifier and make sure our i Tool
; is the current tool.
toolID = (*pState).oTool ->Cet Ful | I dentifier()
| TCURRENT, toollD

; Get the value of the line size droplist.
linesize = WDGET_I NFQ((*pSt ate) . wLi neSi ze, /DROPLI ST_SELECT) +1

; Select the first plot line visualization in the w ndow.
; There should be only one Iine, but we select the first one
; just to be sure.
plotID = (*pState).oTool ->Findldentifiers('*plot*', $
/ VI SUALI ZATI ONS)
plotObj = (*pState).oTool ->GetByldentifier(plotlDO0])
pl ot Obj - >Sel ect

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 369

; Set the THICK property on the plot Iine and conmt the change.
void = (*pState).oTool ->DoSet Property(plotID, 'THCK , $

I i nesize)
(*pState).oTool ->Commi t Acti ons

END
Discussion

This routine uses the same technique as the draw_plot_event routine to ensure that
our iTool isthe current tool. It then retrievesthe identifier of the plot line, ensuresthat
the lineitself is selected, and sets the THICK property on the line. For additional
information on retrieving component identifiers and changing property values, see
Appendix A, “Controlling iTools from the IDL Command Line”.

color_event

The color_event routine is specified as the event handler for the Line Color droplistin
the custom section of the interface. The complete code for this event-handler routine
is shown below.

PRO col or _event, event

Retrieve a pointer to the state structure.
wChi ld = WDGET_I NFQ(event . top, /CHILD)
W DGET_CONTROL, wChild, GET_UWVALUE = pState

; Get the i Tool identifier and nmake sure our i Tool
;. is the current tool.

toolID = (*pState). oTool ->CGetFul I I dentifier()

| TCURRENT, tool D

: Define sone line colors.
colors = [[0,0,0],[255,0,0], [0, 255,0], [0O,0, 255]]

Get the value of the line color droplist and use it
; to select the line color.
l'inecol or = WDGET_I NFO((*pState).wLi neCol or, /DROPLI ST_SELECT)
newcol or = col ors[*,linecol or]

; Select the first plot line visualization in the w ndow.
There should be only one line, but we select the first one
; just to be sure.
plotID = (*pState).oTool ->Findldentifiers('*plot*', $
/ VI SUALI ZATI ONS)
plotj = (*pState).oTool ->CGetByldentifier(plotlD0])
pl ot oj - >Sel ect

Set the COLOR property on the plot line and commt the change.

iTool Developer’s Guide Example: a Custom iTool Interface

370

Chapter 15: Creating a Custom iTool Widget Interface

void = (*pState).oTool - >DoSet Property(plotID, 'COOR, $

newcol or)
(*pState).oTool - >Conmmi t Acti ons

END
Discussion

This routine uses the same technique as the draw_plot_event routine to ensure that
our iTool isthe current tool. It then retrieves the identifier of the plot line, ensuresthat
the line itself is selected, and sets the COLOR property on the line. For additional
information on retrieving component identifiers and changing property values, see
Appendix A, “Controlling iTools from the IDL Command Line”.

filter_event

Thefilter_event routine is specified as the event handler for the “Filter this Plot”
button in the custom section of the interface. The complete code for this event-
handler routine is shown below.

PRO filter_event, event

; Retrieve a pointer to the state structure.
wChild = WDGET_I NFQ(event.top, /CH LD)
W DGET_CONTROL, wChild, GET_WALUE = pState

; Get the i Tool identifier and nmake sure our i Tool
;. is the current tool.

toolID = (*pState).oTool ->Cet Ful | I dentifier()

| TCURRENT, toolID

; Select the first plot line visualization in the w ndow.
; There should be only one line, but we select the first one
; just to be sure. Also retrieve the identifier for the Median
; filter operation.
plotID = (*pState).oTool ->Findldentifiers('*plot*', $
/ VI SUALI ZATI ONS)
nmedi anl D = (*pState).oTool ->Findldentifiers('*median', $
| OPERATI ONS)
plotj = (*pState).oTool ->CGetByldentifier(plotlDO0])
pl ot oj - >Sel ect

; Apply the Median filter operation to the selected plot |ine
; and commit the change.

void = (*pState).oTool - >DoActi on(rmedi anl D)

(*pState).oTool - >Conmi t Acti ons

END

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 371

Discussion

This routine uses the same technique as the draw_plot_event routine to ensure that
our iTool isthe current tool. It then retrieves the identifier of the plot line and the
Median operation, selects the line, calls the DoA ction method to apply the Median
filter to the selected plot line. For additional information on retrieving component
identifiers and executing operations, see Appendix A, “Controlling iTools from the
IDL Command Line".

example2_wdtool

The example2_wadtool routine builds the widget hierarchy for our custom i Tool
interface and registersit with the iTool system. Much of this routine consists of
standard IDL widget programming, and many of the sections have been discussed in
“Creating the Interface Routing” on page 340. The complete code for the widget
creation routine is shown below.

PRO exanpl e2_wdt ool , oTool, TITLE = titleln, $
LOCATION = location, $
VI RTUAL_DI MENSI ONS = vi rtual Di nensions, $
USER | NTERFACE = oU, $; output keyword
REF EXTRA = _extra

; Make sure the i Tool object reference we've been passed
;is valid.
| F (~OBJ_VALI D(0oTool)) THEN $

MESSAGE, 'Tool is not a valid object.’

Set the window title.
title = (N_ELEMENTS(titleln) GIr 0) ? titleln[0O] : "IDL iTool'

; Display the hourglass cursor while the i Tool is |oading.
W DCGET_CONTROL, /HOURGLASS

Create a base wi dget to hold everything.
wBase = W DGET_BASE(/ COLUWN, MBAR = wMenubar, $

TITLE = title, $

/ TLB_KI LL_REQUEST_EVENTS, $

/ TLB_SI ZE_EVENTS, $

/ KBRD_FOCUS_EVENTS, $

_EXTRA = _extra)

; Create a new user interface object, using our iTool.
oU = OBJ_NEW'IDLitU', oTool, GROUP_LEADER = wBase)

;. Menubars:

i Tool nmenubars are created using the CWITMENU conpound
wi dget. The followi ng statements create the standard i Tool

iTool Developer’s Guide Example: a Custom iTool Interface

372

Chapter 15: Creating a Custom iTool Widget Interface

; menus, pointing at the standard i Tool operations containers.

; Note that if the i Tool to which this user interface is applied
; has registered new operations in these containers, those

; operations will show up automatically. Simlarly, if the

; 1 Tool has unregistered any operations in these containers,

; the operations will not appear. Qur exanple tool unregisters
: several of the standard i Tool nenu itens -- see the

; 'exanpl e2tool _ _define.pro' file for exanples. Note that we

; don't want the standard Help menu in our exanple interface,

; SO we don't include it here.

wFi | e

= CW.I TMENU(wMenubar, oUl, 'Operations/File')
WEdi t = CW.I TMENU(wMenubar, oUl, 'Operations/Edit')
W nsert = CW.I TMENU(wMenubar, oUl, 'Operations/Insert')
wOper ations = CW.I| TMENU(wWMenubar, oUl, ' Operations/Operations')
WW ndow = CW.I TMENU(wMenubar, oUl, ' Operations/ W ndow)

; You can create additional (non-iTool) nenus in the

; traditional way. The following lines would create an
; additional menu with two nmenu itenms. Note that you

; must explicitly handle events from non-i Tool menus

; in your event handl er.

; newMenu = W DGET_BUTTON(wivenubar, VALUE=' New Menu')
; newMenul = W DCGET_BUTTON(newMenu, VALUE=' one')
; newMenu2 = W DGET_BUTTON(newivenu, VALUE='two')

;. Tool bars:

; i Tool toolbars are created using the CWI TTOOLBAR conpound

; widget. The follow ng statenments create the standard i Tool

; toolbars. Note that if the iTool to which this user interface

; is applied has registered new operations or manipulators in

; the referenced containers, those operations or nmanipul ators

; Wll show up automatically. Simlarly, if the iTool has

; unregistered any itens in these containers, the itens wll

; not appear. Qur exanple tool uses the standard operations

; and mani pul ators, but only displays three of the six standard

; tool bars.

wrlool bar = W DGET_BASE(wBase, /ROWN XPAD = 0, YPAD = 0, $
SPACE = 7)

wlool 2 = CW.I TTOOLBAR(wTool bar, oU, 'Tool bar/Edit")

wrlool 3 = CW.| TTOOLBAR(wTool bar, oUl, 'Manipulators', $
/ EXCLUSI VE)

wTool 6=CW | TTOOLBAR(wTool bar, oUl, 'Manipul ators/Annotation', $
| EXCLUSI VE)

; Wdget Layout

; This section lays out the main portion of the wi dget

; interface. We create the wi dget |ayout in the usual way,
; incorporating i Tool compound wi dgets and "traditional"

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 373

; widgets in the desired | ocations.

;. Create a base to hold the controls and i Tool draw w ndow.
wBaseU = W DGET_BASE(wBase, /ROW

; Put controls in the | eft-hand base.
wBaselLeft = W DGET_BASE(wBaseUl, /COLUW)
wButt onl = W DCGET_BUTTON(wBaseLeft, $
VALUE='I nsert New Plot', $
EVENT_PRO=' dr aw_pl ot _event')
padBase = W DCGET_BASE(wBaselLeft, YSIZE=5)
wSl i der = WDCGET_SI i der (wBaselLeft, VALUE='10', $
TI TLE=' Nunber of points', M N MUM=5, MAXI MUM=50)
padBase = W DCGET_BASE(wBaselLeft, YSIZE=5)
wLi neSi ze = W DGET_DROPLI ST(wBaseLeft, $
VALUE=[' 1 '"," 2'," 3"'," 4"'], $
TITLE=' Line Size: ', EVENT_PRO='I|inesize_event')
padBase = W DCGET_BASE(wBaselLeft, YSIZE=5)
wLi neCol or = W DGET_DRCPLI ST(wBaselLeft, $
VALUE=[' Bl ack', 'Red','Geen', 'Blue'], $
TI TLE=' Line Color: ', EVENT_PRO=' col or_event')
padBase = W DCET_BASE(wBaselLeft, YSIZE=5)
wButt on2 = W DGET_BUTTON(wBaseLeft, $
VALUE='Filter this Plot', $
EVENT_PRO='filter_event')

; Put the iTool draw wi ndow on the right.
wBaseRi ght = W DGET_BASE(wBaseUl, /COLUMN, /BASE_ALI GN_RI GHT)

; Set the initial dinmensions of the draw wi ndow, in pixels.
di nensi ons = [350, 350]

; Create the i Tool drawabl e area.
wDr aw = CW. | TW NDOWN wBaseRi ght, oUl, $
DI MENSI ONS = di nensi ons, $
VI RTUAL_DI MENSI ONS = vi rtual Di mensi ons)

; Get the geometry of the top-level base wi dget.
baseGeom = W DGET_I NFQ(wBase, / GEOVETRY)

; Create the status bar.
wSt at us = CW.I TSTATUSBAR(wBase, oU, $
XSl ZE = baseCGeom xsi ze- baseGeom xpad)

; If the user did not specify a location, position the
; i Tool on the screen.
I F (N_ELEMENTS(I ocati on) EQ 0) THEN BEG N
| ocation = [(screen[0] - baseGeom xsize)/2 - 10, $
((screen[1] - baseGeomysize)/2 - 100) > 10]

iTool Developer’s Guide Example: a Custom iTool Interface

374 Chapter 15: Creating a Custom iTool Widget Interface

ENDI F

W DGET_CONTROL, wBase, MAP = 0, $
TLB_SET_XOFFSET = location[0], $
TLB_SET_YOFFSET = | ocati on[1]

; Get the widget ID of the first child w dget of our

; base widget. We'll use the child w dget's user val ue
; to store our widget state structure.

wChi | d = W DCGET_I NFQ(wBase, [/ CHI LD)

; Create a state structure for the w dget and stash
; a pointer to the structure in the user value of the
; first child widget.

state = { $
oTool . oTool , $
oUl ;oo $
wBase : wBase, $
title Dotitle, $
basesi ze : [oL, oL], %
wrool bar . wlool bar, $
wDr aw © wDr aw, $
wSt at us © WSt at us, $
wSl i der : wSlider, $
wLi neSi ze : wLineSize, $

wLi neCol or : wLineCol or }

pState = PTR_NEW state, /NO_COPY)
W DGET_CONTROL, wChild, SET_UWVALUE = pState

;. Realize our interface. Note that we have | eft the
; interface unmapped, to avoid flashing.
W DGET_CONTROL, wBase, /REALIZE

; Retrieve the starting dinensions and store them
; Used for window resizing in event processing.

W DGET_CONTROL, wBase, TLB_GET_SI ZE = basesi ze
(*pState) . basesi ze = basesi ze

; Register the top-level base widget with the U object.
; Returns a string containing the identifier of the
; interface wi dget.
nyl D = oUl - >Regi st er Wdget (wWBase, 'Exanple 2 Tool', $
" exanpl e2_wdt ool _cal | back")

; Register to receive nessages fromthe i Tool conponents

; included in the interface.
oUl - >AddOnNot i fyCbserver, nyl D, oTool ->Get Ful | I dentifier()

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 375

Specify how to handl e destruction of the w dget interface.
W DGET_CONTROL, wChild, KILL_NOTIFY = "exanpl e2_wdt ool _cl eanup”

Di splay the i Tool wi dget interface.
W DGET_CONTROL, wBase, [/ MAP

Start event processing.
XMANAGER, ' exanpl e2_wdtool ', wBase, /NO BLOCK

END
Discussion

Most of the important sections of this routine have been discussed in previous
sections. There are, however, afew additional points worth noting:

¢ Weusetheuser value of thefirst child of the top-level base (wChi | d) to storea
pointer to the widget interface’s state structure. Thisalows usto easily retrieve
the state structure in event-handler routines without the need to use the user
value of the top-level base.

e Thestate structure contains the widget IDs of all of the widgets we need access
toin our event-handler routines, as well as object references to the iTool and
user interface object, the current dimensions of the base widget, and the title.
You may find it useful to cache other information in the state structure as well.

e Some actions, such as retrieving the actual size of the top-level base widget,
can only be performed after the widget hierarchy has been realized. To prevent
flashing after realization but before we are ready to begin event processing, we
set the MAP keyword equal to O (zero) before realizing the widgets and back to
1 (one) just before our call to XMANAGER begins processing events.

iTool Class Definition Routine

The class definition routine creates a new iTool class based on the IDLitToolbase
class. The Init method simply unregisters operations and manipulators we do not
want to appear in the menus and toolbars of our new interface.

Note
ThisiTool classisdefined inthefileexanpl e2t ool __defi ne. prointhe
exanpl es/ doc/ i t ool s subdirectory of the IDL distribution.

FUNCTI ON exanpl e2tool : : I nit, _REF_EXTRA = _extra
Cal |l our super class.

IF (self->IDLitTool base::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, O

iTool Developer’s Guide Example: a Custom iTool Interface

376 Chapter 15: Creating a Custom iTool Widget Interface

; This tool renmoves several of the standard i Tool operations
; and mani pul ators.

;*** | nsert nenu

sel f->UnRegi ster, ' OPERATI ONS/ | NSERT/ VI SUALI ZATI ON
sel f->UnRegi ster, ' OPERATI ONS/ | NSERT/ VI EW

sel f->UnRegi ster, ' OPERATI ONS/ | NSERT/ DATA SPACE'
sel f->UnRegi ster, ' OPERATI ONS/ | NSERT/ COLORBAR

;*** W ndow nenu
sel f->Unregi ster, ' OPERATI ONS/ W NDOW FI TTOVI EW
sel f->Unregi ster, ' OPERATI ONS/ W NDOW DATA MANAGER

; *** Qperations nmenu
sel f->UnRegi ster, ' OPERATI ONS/ OPERATI ONS/ MAP PRQJECTI ON

; *** Tool bars
sel f->UnRegi ster, ' MANI PULATORS/ ROTATE'

RETURN, 1
END
PRO exanpl e2t ool __Defi ne

struct = { exanpl e2tool, $
I NHERI TS | DLi t Tool base $; Provides i Tool interface

}

END

To find the identifiers of operations and manipulators you wish to unregister, create
an instance of the tool with the items still registered, and use the Findldentifiers
method of the IDLitTool classto retrieve the full identifiers of the itemsyou are
interested in. See “Retrieving Component Identifiers’ on page 382 for details.

iTool Launch Routine
Our iTool launch routine simply registers the exanpl e2t ool iTool class and the

exanpl e2_wdt ool interface definition, then creates an instance of the
Exanpl e 2 Tool iTool using the Exanpl e2_Ul interface.

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 377

Note
ThisiTool launch is defined in the file exanpl e2t ool . pro inthe
exanpl es/ doc/ i t ool s subdirectory of the IDL distribution.

PRO exanpl e2tool, IDENTIFIER = identifier, _EXTRA = _extra

| TREA STER, ' Exanple 2 Tool', 'exanple2tool’
| TREA STER, ' Exanple2_Ul"', 'exanple2_wdtool', /USER_|I NTERFACE

identifier = IDLI TSYS CREATETOOL(' Exanple 2 Tool',$
VI SUALI ZATION_TYPE = ['"Plot'], $
USER_| NTERFACE=' Exanple2_U "', $
TITLE = ' Exanpl e i Tool Interface', $
_EXTRA = _extra)
END

Note that our launch routine does not allow the iTool to accept command-line
arguments. A more sophisticated i Tool might allow the user to supply data at the
command line, as described in “ Creating an iTool Launch Routine” on page 97.

iTool Developer’s Guide Example: a Custom iTool Interface

378 Chapter 15: Creating a Custom iTool Widget Interface

Example: a Custom iTool Interface iTool Developer’s Guide

Appendix A:

Controlling iTools from
the IDL Command Line

This appendix describes mechanisms that allow you to control an existing iTool from the IDL

command line.

Overview of iTool Programmatic Control . 380
Retrieving an iTool Object Reference 381
Retrieving Component Identifiers 382
Retrieving Property Information 385

iTool Developer’s Guide

Changing Property Values 389
Running Operations 391
Selecting ItemsintheiTool 393
Replacing DatainaniTool 394

379

380 Appendix A: Controlling iTools from the IDL Command Line

Overview of iTool Programmatic Control

TheiTool framework is designed to let you create tools that are used interactively, in
real time. Furthermore, one of the main goals of the iTools framework is to make it
easier to create a standard graphical user interface that allows end-users to manipulate
tools using a mouse and keyboard.

Still, it may be useful and convenient at times to control i Tools programmatically,
from the IDL command line or in more traditional routinesthat do not rely heavily on
framework programming. For example, you may want to write asimple IDL batch
file that creates a visualization, manipulates it in various ways, and exports an image
file containing the result.

While complete control over an existing iTool is difficult from “outside” the tool
itself, this appendix describes techniques that allow you to control many features of a
tool using a small number of framework methods and procedural helper routines.
Controlling an iTool using the techniques described here requires a basic familiarity
with iTool conceptsincluding property management, operations, and i Tool object
identifiers. It also departs from purely procedural techniquesin that it requiresthe use
of object method calls, albeit at avery basic level.

How to Control an iTool

To control an existing iTool from the IDL command line (and by extension, from
within non-iTool routines invoked at the IDL command line), you will do the
following things:

1. Usethe TGETCURRENT function to retrieve the object reference to an
existing iTool.

2. Usethetool object’s Findldentifiers method to retrieve the iTool identifiers of
visualizations you wish to alter and operations you wish to execute.

3. Usethetool object’s DoSetProperty method to change properties of
visualizations or operations.

4. Usethevisualization object’s Select method to ensure that the proper items are
selected, if necessary.

5. Usethetool object’s DoAction method to execute operations.

6. Usethetool object’s CommitActions method to commit the changes to the
tool’s undo/redo buffer, if necessary.

These steps are described in detail in the following sections.

Overview of iTool Programmatic Control iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 381

Retrieving an iTool Object Reference

In order to change an existing iTool from the IDL command line (or from a non-iTool
routine), you must first retrieve an object reference to the iTool you wish to change.

Use the TOOL keyword to the ITGETCURRENT function to retrieve the object
reference to the currently-active iTool:

i dTool = | TGETCURRENT(TOOL=0Too0l)

Inthisexample, thevariablei dTool will contain theiTool’s object identifier, and the
variable oTool will contain theiTool’s object reference.

Note that the iTool for which you want to retrieve the object reference must be the
currently-active tool. You can ensure that an iTool is the currently-active tool in the
following ways:

e AniTool that hasjust been created is the currently-active tool.
¢ Select theiTool manually, using the mouse.

¢ Usethe IDENTIFIER keyword when creating the iToal to retrieve its object
identifier. Then use the ITCURRENT procedure to make the iTool active.

| PLOT, data, | DENTI FI ER=i dTool
. other IDL conmmands ...
| TCURRENT, idTool

iTool Developer’s Guide Retrieving an iTool Object Reference

382 Appendix A: Controlling iTools from the IDL Command Line

Retrieving Component ldentifiers

In order to affect an item within an iTool — change a property of avisualization, for
example, or apply an operation — you must first retrieve the identifier for the item.
iTool identifiers are described in detail in “iTool Object Identifiers’ on page 27.

In the case of operations, you may be able to construct the appropriate identifier
string based on visual inspection of the hierarchy shown in the Operations Browser
coupled with your knowledge of the iTools framework. Similarly, in the case of
visualizations, you may be able to construct the identifier string based on visual
inspection of the hierarchy shown in the Visualization Browser. However, the
Findldentifiers method of the IDLitTool class lets you programmatically (and
unambiguously) retrieve the identifier of any item in the current iTool’s component
object hierarchy.

Using the Findldentifiers Method

Use the Findldentifiers method to retrieve the full object identifier for an iTool
component object: avisualization, an operation, aview, awindow — any component
that existsin the current iTool’s component object hierarchy. Once you have the
identifier for acomponent object, you can use iTool framework methods to affect that
object as described in the later sections of this chapter.

The syntax for the Findldentifiers method is:
Result = Obj->IDLitTool::Findldentifiers([Pattern] [, Keywords])

where Obj isan IDLitTool object and Result isa string array containing the full object
identifiers of iTool component objects that contain the string specified by Pattern.
(See“IDLitTool::Findldentifiers’ in the IDL Reference Guide manual for complete
information on the keywords accepted.)

Note on Pattern Matching

The Findldentifiers method finds matches for Pattern in full object identifiers using
the same rules as the STRMATCH function, with the exception that searches are
case-insensitive. In almost all cases, you will want to use wildcard charactersto allow
asubstring of the full identifier to be matched. See the examples below for additional
information.

Retrieving Component Identifiers iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 383

Findldentifier Examples

For these examples, suppose you have an i Surface tool created by the following
Statement:

| SURFACE, DI ST(40)
The full object identifier for this surface visualization looks something like:
/ TOOLS/ SURFACE TOOL/ W NDOW VI EW 1/ VI SUALI ZATI ON LAYER/ DATA SPACE/ SURFACE
If you retrieve an object reference to our surface tool using the following statement:
voi d = | TGETCURRENT(TOOL=sur f aceTool)

you might suppose that the following statement would return the identifier string
shown above:

PRI NT, surfaceTool ->Fi ndl dentifiers('surface')

In fact, this statement returns no results, since thereis no object identifier in the iTool
hierarchy that consists solely of the string ' sur f ace' .

You might next try the following statement:
PRI NT, surfaceTool ->Fi ndldentifiers('*surface*')

to match any object identifier that containsthe string* sur f ace' . This statement
will produces many lines of output; in fact, it will list every component in the surface
tool’s object hierarchy, because each object identifier contains the string

'/ TOOLS/ SURFACE TOCOL' .

You might next try the following statement:
PRI NT, surfaceTool ->Findldentifiers('*surface')

to match any object identifier that containsthe string ' sur f ace' at the end of the
identifier. This statement will produce output that looks something like this:

/ TOOLS/ SURFACE TOOL/ OPERATI ONS/ FI LE/ NEW SURFACE

/ TOOLS/ SURFACE TOOL/ CURRENT STYLE/ VI SUALI ZATI ONS/ SURFACE

/ TOOLS/ SURFACE TOOL/ CURRENT STYLE/ VI SUALI ZATI ONS/ | SOSURFACE

/ TOOLS/ SURFACE TOOL/ W NDOW VI EW 1/ VI SUALI ZATI ON LAYER/ DATA SPACE/ SURFACE

Here, a smaller number of identifiers match the pattern, but still more than you are
interested in.

Finally, you might try the following statement:
PRI NT, surfaceTool ->Findldentifiers('*surface*', /VISUALIZATI ONS)

iTool Developer’s Guide Retrieving Component Identifiers

384 Appendix A: Controlling iTools from the IDL Command Line

This statement will match any object identifier in the visualization layer that contains
thestring ' surf ace' . It will produce output that looks something like this:

/ TOOLS/ SURFACE TOOL/ W NDOW VI EW 1/ VI SUALI ZATI ON LAYER/ DATA SPACE/ SURFACE

which isthe identifier for the plot line just created. Note that if your iTool contained
more than one surface visualization, identifiers for each surface would be returned.

Similarly, suppose you wanted the object identifier for the New Surface operation.
Either of the following statements:

PRI NT, surfaceTool ->Fi ndldentifiers('*surface', /OPERATI ONS)
PRI NT, surfaceTool ->Fi ndldentifiers('*/operations/*surface')

produce the following output:
/ TOOLS/ SURFACE TOOL/ OPERATI ONS/ FI LE/ NEW SURFACE

See"IDLitTool::Findldentifiers’ in the IDL Reference Guide manual for complete
information on the keywords accepted by this method.

Retrieving Component Identifiers iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 385

Retrieving Property Information

Whileit is possible to execute an i Tool operation with just the operation’s component
identifier (as described in “Running Operations’ on page 391), in many cases you
will want to modify the operation’s properties before execution. In other cases you
may not wish to execute an operation at all — you may only beinterested in changing
the value of one or more properties of a given component object. Modifying the
properties of an iTool component (as described in “Changing Property Values’ on
page 389) requires that you know the property identifier of the component object
property you wish to change.

Retrieving Property Identifiers

Once you have retrieved the component identifier string for an iTool component (as
described in “Retrieving Component I dentifiers” on page 382), you can use the
component identifier to retrieve the property identifiers for properties of that
component. For example, the following statements create an iPlot tool containing
some random data, retrieve the component object identifier for the Smooth operation,
and print the property identifiers:

| PLOT, RANDOMJ(seed, 15)

i dTool = | TGETCURRENT(TOOL=0Too0l)

i dSnpot h= oTool - >Fi ndl dentifiers(' *snoot h*', / OPERATI ONS)

obj Snoot h = oTool - >Cet Byl denti fi er (i dSnoot h)

propsSnoot h = obj Snoot h- >Quer yProperty()
PRI NT, propsSnoot h

IDL prints:
NAME DESCRI PTI ON TYPES SHOW EXECUTI ON_U W DTH
The strings displayed are the property identifiers for the Smooth operation.

Note that after we have retrieved the full identifier for the Smooth operation, we use
the identifier as the argument to the GetByldentifier method of the IDLitContainer
class. The GetByldentifier method returns the object reference to the Smooth
operation; we need the object reference in order to then call the QueryProperty
method, which returns a string array containing the property identifiers.

See “IDLitComponent::QueryProperty” and “IDLitContainer::GetByldentifier” in
the IDL Reference Guide manual for additional details on these methods.

iTool Developer’s Guide Retrieving Property Information

386 Appendix A: Controlling iTools from the IDL Command Line

Property Attribute Information

Knowing the property identifier for the property you wish to change is often enough,
if you are aready familiar with the property, its datatype, and range of possible
values. For example, suppose you want to change the line thickness of aplot line. You
may already know that the value of the THICK property of aplot lineis afloating-
point integer, so you can confidently call the DoSetProperty method as described in
“Changing Property Values’ on page 389, specifying a floating-point number for the
new line thickness value.

But you may not always know the data type or range of allowed values for a given
property. If you have the property identifier, you can get additional information on the
property using the GetPropertyAttribute method of the IDLitComponent class.

For example, suppose we want to set the value of the WIDTH property of the Smooth
operation. The following statements will retrieve the text description, the data type,
and the range of allowed values for the WIDTH property:

obj Snoot h- >CGet PropertyAttri bute, 'WDTH , DESCRI PTI ON=desc, $

TYPE=t ype, VALI D_RANGE=r ange
PRI NT, desc, type, range

IDL prints:
Snmooth Filter Wdth. 2 0

Thefirst attribute (DESCRIPTION) is the text description of the property. The
second attribute (TY PE) is the data type accepted by the property; the description of
the TY PE attribute reveals that the value 2 indicates that the property accepts an
integer value. The third attribute (VALID_RANGE) isthe range of accepted values;
the scalar value 0 indicates that there are no restrictions on the range of integer values
alowed.

See “IDLitComponent::GetPropertyAttribute’ in the IDL Reference Guide manual
for additional information on retrieving property attributes. “An Example Property
Information Retrieval Routing” on page 387 discusses an example utility (included in
the IDL distribution) that uses these techniques.

Property Value Information

To retrieve the current value of a property, you must use the property identifier and
the GetPropertyByldentifier method of the IDLitComponent class.

For example, the following statements will retrieve and print the current value of the
WIDTH property of the Smooth operation in the current iTool:

Retrieving Property Information iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 387

success = obj Snoot h- >Get PropertyByl dentifier(' WDTH , w dt h_val ue)
I F success THEN PRINT, 'Wdth is: ', width value ELSE $
PRI NT, 'No val ue returned

IDL prints:
Wdth is: 3
The GetPropertyByldentifier function method returns avalue of 1 (one) if the

property value was retrieved successfully, or O (zero) otherwise. In the example, the
property value of 3 is successfully retrieved.

Note that you could also use the GetProperty method:

obj Snoot h- >Cet Property, W DTH=wi dt h_val ue)
PRINT, 'Wdth is: ', width_val ue

Whilethisis dlightly simpler, it makes the error handling slightly trickier, and forces
you to hard-code the name of the property whose value you are retrieving.

See“1DLitComponent::GetPropertyByldentifier” in the IDL Reference Guide manual
for additional information on retrieving property values.

An Example Property Information Retrieval Routine

An example utility routine named i t pr oper t yr eport. pr o usesthe methods
discussed in the previous sections to retrieve property information. It isincluded in
the exanpl es/ doc/ i t ool s directory of the IDL distribution.

Call i t propertyreport. pro by specifying aniTool object reference and the full
object identifier (as returned by the Findldentifiers method) of the component whose
properties you would like to inspect. For example, callingi t propert yreport with
the iTool object reference and operation identifier used above:

itpropertyreport, oTool, idSnooth
produces the following output:
Properties of /TOOLS/ PLOT TOOL/ OPERATI ONS/ OPERATI ONS/ FI LTER/ SMOOTH

I dentifier Nane Type
NAME Nane STRI NG
DESCRI PTI ON Descri ption STRI NG
TYPES TYPES USERDEF
SHOW EXECUTI ON_UI Show di al og BOCLEAN
W DTH W dt h I NTEGER

iTool Developer’s Guide Retrieving Property Information

388 Appendix A: Controlling iTools from the IDL Command Line

Note

Thei t propertyreport utility produces formatted text output in the IDL output

log. This output will be correctly aligned only if the command log uses a fixed-
width font.

Additionally, you can set the VALUE keyword toi t propert yreport todisplay a
column containing the current values of the properties listed; you can set the
DESCRIPTION keyword to display a column containing the text description of the

property. You may want to inspect thei t pr opert yreport . pr o file for additional
information and example code.

Retrieving Property Information iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 389

Changing Property Values

Given the object identifier for a property, there are two ways to change the property
value: using the DoSetProperty method of the IDLitTool class, and using the
SetProperty method of the IDLitComponent class. When changing the value of a
registered property, in most cases, it is better to use the DoSetProperty method.

Using the DoSetProperty Method

Use the DoSetProperty method of the IDLitTool classto change the value of a
property associated with an item in the iTool hierarchy. Using the DoSetProperty
method has two advantages over using the SetProperty method:

1. DoSetProperty takes an object identifier as its argument; there is no need to
retrieve the object reference to the property you wish to change.

2. The DoSetProperty method takes care of adding the property change to the
iTool’s undo-redo buffer.

Warning
To use the DoSetProperty method, the property whose value is being changed must
be aregistered property of the selected iTool component object. If the property is
not registered, use the SetProperty method instead.

For example, suppose you have created an iPlot tool with the following command:
| PLOT, RANDOMJ(seed, 15)
To change the color of the plot line, you could use the following statements:

i dTool | TGETCURRENT(TOOL=0Tool)

i dPI ot oTool ->Findl dentifiers('*plot', /VISUALI ZATI ONS)
success = oTool - >DoSet Property(idPlot, 'COLOR, [40, 120, 200])
oTool - >Conmi t Acti ons

Warning
Make sure you understand what the Findldentifiers method will return for a given
search string and keyword; care is necessary to ensure that you retrieve the
identifier for the correct item. See “ Retrieving Component Identifiers’ on page 382
for details.

Note that the property identifier used as the second argument to the DoSetProperty
method is often, but not always, the same as the property name that isdisplayed in the

iTool Developer’s Guide Changing Property Values

390

Appendix A: Controlling iTools from the IDL Command Line

Visualization Browser property sheet. Methods for finding property identifiers are
discussed in detail in “Retrieving Property Information” on page 385.

The third argument to the DoSetProperty method is the new value for the property.
Techniques for determining the data type and allowed values for a given property are
described in “ Property Attribute Information” on page 386.

Finally, the CommitActions method of the IDLitTool class commits all pending
transactions to the undo-redo buffer and refreshes the current window. Note that the
property changes are not undoable until the changes have been committed with a call
to the CommitActions method.

Tip
You can do make severa calls to the DoSetProperty method, followed by asingle
call to the CommitActions method. Thiswill bundlie all of the SetProperty actions
into a single item in the undo-redo buffer.

Using the SetProperty Method

Use the SetProperty method of the component object class to change the value of a
property associated with an itemin theiTool hierarchy. Using the SetProperty method
requires that you retrieve an object reference to the object whose properties you are
setting.

Note
If the property whose value you want to change is not registered, you must use the
SetProperty method rather than the DoSetProperty method.

For example, suppose you have created an iPlot tool with the following command:
| PLOT, RANDOMJ(seed, 15)
To change the color of the plot line, you could use the following statements:

i dTool | TGETCURRENT(TOOL=0Tool)

i dPI ot oTool ->Fi ndl dentifiers('*plot', /VISUALI ZATI ONS)
oPl ot = oTool - >Get Byl dentifier(idPlot)

oPl ot - >Set Pr operty, COLOR=[40, 120, 200]

oTool - >Ref r eshCur r ent W ndow

Warning
Property changes made using the SetProperty method are not placed in the undo-
redo buffer.

Changing Property Values iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 391

Running Operations

Use the DoAction method of the IDLitTool class to execute an operation on the
currently selected itemin the currently selected i Tool. For example, suppose you have
created an iPlot tool with the following command:

| PLOT, RANDOMJ(seed, 15)
To call the Smooth operation on the plot line, you could use the following statements:

i dTool = | TGETCURRENT(TOOL=0Too0l)
i dMedi an = oTool - >Fi ndl dentifiers(' *medi an*', / OPERATI ONS)
success = oTool - >DoAct i on(i dMedi an)

The Median operation would be applied. If the SHOW_EXECUTION_UI property
for the operation is set to True, the operation’s dialog appears before the operation is
executed. See “Note on the SHOW_EXECUTION_UI Property” on page 391.

Warning
This examplerelies on the fact that the plot is selected after theiTool is created; see
“Selecting Itemsin the iTool” on page 393 for details on how to set the selection
explicitly.

You can insert one or more calls to the DoSetProperty method (as described in
“Changing Property Values’ on page 389) before the call to the DoA ction method.
For exampl e, to change the Width property used by the Median operation to 9, and set
the Even Average property to True you could do the following:

i dTool = | TGETCURRENT(TOOL=0Too0l)

i dMedi an = oTool ->Fi ndldentifiers(' *nedi an*', / OPERATI ONS)
success = oTool - >DoSet Property(idMedi an, ' WDTH , 9)
success oTool - >DoSet Property(i dMedi an, 'EVEN , 1)
success oTool - >DoAct i on(i dMedi an)

In this example both property changes and the application of the Median operation
are entered into the undo-redo buffer as asingleitem.

Note on the SHOW_EXECUTION_UI Property

Every iTool operation included with the standard i Tools that has a visible user
interface has aregistered property named SHOW_EXECUTION_UI. Setting this
property to 1 (True) will cause the operation’s graphical user interface to be displayed
before the operation is executed, giving the user the option to change any parameters
the operation may have. If the property is set to O (False), the operation will execute
without displaying the graphical user interface.

iTool Developer’s Guide Running Operations

392

Appendix A: Controlling iTools from the IDL Command Line

When executing operations using the mechanisms described in this chapter, you may
want to set the SHOW_EXECUTION_UI property to O (False), since leaving it set to
True will require user interaction. To change the value of the property temporarily,
you could use statements similar to the following to first retrieve the value of the
property, save that value, and set it back after the operation has executed:

i dTool = | TGETCURRENT(TOOL=0Too0l)

i dMedi an = oTool ->Fi ndldentifiers(' *nedi an*', / OPERATI ONS)
oMedi an = oTool - >Get Byl denti fi er (i dvedi an)

oMedi an- >Cet Property, SHOW EXECUTI ON_Ul =i nit _val

oMedi an- >Set Property, SHOW EXECUTI ON_UI =0

success = oTool - >DoAct i on(i dMedi an)

oMedi an- >Set Property, SHOW EXECUTI ON_Ul =i nit_val

Notice that we retrieve an object reference to the Median operation and use the
SetProperty method rather than the DoSetProperty method to set the value of the
SHOW_EXECUTION_UI property. We do this because we do not want the last call
to SetProperty to be placed in the undo-redo buffer. Since the call to the DoAction
method will place al outstanding changes into the undo-redo buffer, al of the
changes except for the very last are undoable. But since the last line simply setsthe
value of the SHOW_EXECUTION_UI property back to itsintial value, thereis no
need to place this change in the undo-redo buffer as a separate item — in fact we
would rather it not be placed in the buffer at all.

If we used DoSetProperty for the final change, the change would be placed in the
undo-redo buffer the next time actions were committed, either by a call to DoAction
or by acall to CommitActions.

Note
We could have used the GetPropertyByldentifer and SetPropertyByldentifier
methods rather than the GetProperty and SetProperty methods. This would not
affect the outcome of the series of statements shown, and since the name of the
property whose value we are getting and setting is fixed, using GetProperty and
SetProperty works just as well.

Running Operations iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 393

Selecting Items in the iTool

When you execute an operation in an iTool, the operation will be applied to the
currently selected item. You can use the Select method of the IDLitVisuaization class
to ensure that the correct item is selected.

To select an item, do the following:

1. Findthe object’s full identifier as described in “ Retrieving Component
Identifiers’ on page 382. Note that only visualizations and annotations can be
selected.

2. Get an abject reference to the object using the GetByldentifier method of the
IDLitContainer class.

3. Cadll the Select method.
Example: Selecting an Item Programmatically

For example, suppose you create an i Plot tool with two plot lines, using the following
Statements:

| PLOT, RANDOMJ(seed, 15)*FI NDGEN(15)
| PLOT, FI NDGEN(15), / OVERPLOT

After these statements have been executed, the second (straight) plot line will be
selected in the tool. To select thefirst plot line, you would use the following
Statements:

i dTool = | TGETCURRENT(TOOL=0Too0l)

pl ot I Ds = oTool ->Fi ndl dentifiers('*plot*', /VISUALI ZATI ONS)
pl ot Obj 0 = oTool ->Get Byl denti fier(plotlDs[0])

pl ot Cbj 0- >Sel ect

To apply the smooth operation to the first plot line (which has now been
programmeatically selected), setting the value of the SHOW_EXECUTION_UI
property to O (False), you would use the following statements:

i dSnpboth = oTool ->Fi ndldentifiers('*snooth', / OPERATI ONS)

success oTool - >DoSet Property(i dSnmoot h, ' SHON EXECUTI ON_U ', 0)
success oTool - >DoAct i on(i dSnoot h)

iTool Developer’s Guide Selecting Items in the iTool

394 Appendix A: Controlling iTools from the IDL Command Line

Replacing Data in an iTool

You can replace or update datain an existing i Tool using either of two methods: using
theiTool’s creation routine and one of the VIEW keywords, or by retrieving the data
object and calling the SetData method. Both methods will change the data stored in
the Data Manager and will cause the display to be updated automatically.

Using the iTool Creation Routine

You can replace datain an existing iTool by using the iTool’s creation command with
the VIEW_NUMBER or VIEW_NEXT keyword set to aview that uses the data you
wish to replace.

Note
The visualization is removed and recreated when you replace data using this
technique. Any property changes you may have made to the old visualization will
be lost. To preserve changes made to the visualization, see “ Using the SetData
Method” on page 395.

For example, suppose you have an iPlot tool with asingle view, created with the
following command:

| PLOT, nyDatal

Assuming theiPlot tool is selected, the following command will replace the datain
thetool (nyDat al) with a new data set (nyDat a2):

| PLOT, nyData2, VIEW NUMBER=1

Note
The view number starts at 1, and corresponds to the position of the view within the
graphics window (not necessarily the position on the screen). In the case of a
gridded window layout, views are added to the iTool window beginning in the
upper left-hand corner, and proceeding left to right and then down. You can see the
position of a given view within the container by inspecting the tree view of the
Visualization Browser. You can also re-order views using the itemsin the
Edit - Order menuintheiTool.

In our example, if myDat al isnot in use by any other iTool, it will be removed from
the iTools Data Manager by this operation. If nyDat al isused by avisualization in
another view or another iTool, it will not be deleted.

Replacing Data in an iTool iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 395

Note
If the currently-active iTool contains only one view, setting the VIEW_NEXT
keyword has the same effect as setting VIEW_NUMBER=1.

Using the SetData Method

You can replace the data that underlies a visualization using the SetData method of
the IDLitData class. This technique has the advantage of preserving other changes
you may have made to your visualization (property changes, etc.), but requires that
you first retrieve the object identifier for the data item you want to replace. This, in
turn, requires that you know the parameter name of the of the parameter that contains
the data.

Retrieving Parameter Names from the Visualization

Toretrieve alist of parameter names for a visualization type, use the QueryParameter
method of the IDLitParameter class. The following example creates a plot
visualization and retrieves the names of the plot visualization’s registered parameters:

Create the plot visualization
| PLOT, RANDOMJ(seed, 15)
i dTool = | TGETCURRENT(TOOL=0Too0l)

Retrieve the object reference to the plot visualization object.
i dPl ot = oTool ->Findldentifiers('*plot', /VISUALI ZATI ONS)
oPl ot = oTool - >Get Byl dentifier(idPlot)

Retrieve and print the paranmeter names.
oPl ot Parans = oPl ot - >Quer yPar anet er s(COUNT=count)
For i=0,count-1 DO PRI NT, oPlotParns[i]

IDL prints:

Y
X

VERTI CES

Y ERROR

X ERROR
PALETTE
VERTEX_COLORS

Setting a New Data Value

Once you know the name of the parameter whose data you wish to change, retrieve
the IDLitData object associated with that parameter using the GetParameter method
of the IDLitParameter class. You can then use the SetData method of the IDLitData

iTool Developer’s Guide Replacing Data in an iTool

396

Appendix A: Controlling iTools from the IDL Command Line

classto insert new data into the parameter. The following example changes the data
associated with the “Y” parameter of the plot visualization created in the previous
section:

oDataY = oPl ot - >Get Paraneter('Y')
success = oDat aY->Set Dat a(FI NDGEN(50))

Using the Findldentifiers Method

It isalso possible to use the Findldentifiers method to retrieve the full identifier of a
data object stored in the Data Manager, and use that identifier to retrieve the
IDLitData object using the GetByldentifier method of the IDLitContainer class.
While this approach might seem simpler than retrieving the parameter names from
the visualization and using the GetParameter method, it has the drawback that
identifiers for objects in the Data Manager do not necessarily correspond to asingle
visualization. As aresult, it can be difficult to determine which data item is which,
based solely on inspection of the identifier.

Under some circumstances this may not be a problem. For example, if your code
creates a new visualization based on data supplied at the command line, you will
know that the data object or objects created in the Data Manager will bethe last items
in the Data Manager container object. The following code creates a new surface
visualization using the ISURFACE command, and then immediately retrieves the
data identifier of the last data item inserted into the Data Manager:

| SURFACE, DI ST(40)

i dTool = | TGETCURRENT(TOOL=0Too0l)

al | Data = oTool ->Fi ndl denti fi ers(/ DATA_MANAGER, COUNT=c)
i dDat aSurface = al | Dat a[c- 1]

PRI NT, i dDataSurface

IDL prints:
/| DATA MANAGER/ SURFACE PARAMVETERS/ Z

You then could the use the dataidentifier to retrieve areference to the data object and
change the data value using the SetData method:

oSurfaceData = oTool - >Get Byl denti fi er (i dDat aSurface)
success = oSurfaceDat a->Set Dat a(1/ (Dl ST(40) +1))

Replacing Data in an iTool iTool Developer’s Guide

Appendix B:

ITool Compound
Widgets

This appendix contains reference documentation for IDL compound widgets used by the iTools.

Overview: iTools Compound Widgets. ... 398 CW_ITSTATUSBAR 406
CWITMENU 399 CW_ITTOOLBAR 409
CW_ITPANELccoooo. 403 CW_ITWINDOW 414

iTool Developer’s Guide 397

398

Appendix B: iTool Compound Widgets

Overview: iTools Compound Widgets

The compound widgets described in this appendix provide the base functionality
needed to create an iTool user interface using IDL widgets. These widgets are useful
only in the context of creating an iTool interface; they require the presence of the
iTools system object to function properly. Attempts to use these widgets outside the
context of the iToolswill not succeed.

Before attempting to use these compound widgets to create an iTool user interface,
you should be familiar with (at a minimum) the following concepts:

TheiTool object hierarchy (see Chapter 2, “iTool System Architecture”)
Creating an iTool (see Chapter 5, “Creating an iTool”)

iTool user interface concepts (see Chapter 11, “iTool User Interface
Architecture”)

Creating aniTool interface using IDL widgets (see Chapter 15, “Creating a
Custom iTool Widget Interface”)

Overview: iTools Compound Widgets iTool Developer’s Guide

Appendix B: iTool Compound Widgets

CW_ITMENU

399

The CW_ITMENU function creates atop-level pulldown menu compound widget.
The menu items in the pulldown menu correspond to the operations contained in a
specified container object within the OPERATIONS container of the associated
iTool. (See“iTool Object Hierarchy” on page 30 for a description of the iTool object

hierarchy.)

The CW_ITMENU widget automatically performs the following actions:

1. For each child inthefolder, creates either asubmenu (if the child isacontainer
object) or amenu item (if the child is aregistered operation). In both cases the
child's NAME property is used for the menu item value.

e Ifthechildisacontainer, CW_ITMENU recursively creates submenus and

menu items for that child's children.

e If thechild isan operation, CW_ITMENU creates amenu item. The
child’'s ACCELERATOR property is used for the keyboard accel erator
(unlessthe CONTEXT_MENU keyword is set). The DISABLE property
isused to determineinitial sensitivity. If the CHECKED property isset, a
checked menu item is created. If SEPARATOR is set, amenu separator is
inserted before the menu item. See IDLitTool::RegisterOperation for

details on using these properties.

Registers the newly-created menu with the specified user interface object.

Addsitself as an observer of the specified container. If any changes occur to
items within the container, then the menu will be notified and will
automatically update itself. The CW_ITMENU widget listens for the

following messages:

Message Value

Description / Result

ADDITEMS Object identifier

An object was added to the
container. New menu and
submenu items are added as
necessary.

Table 15-1: Messages Understood by CW_ITMENU

iTool Developer’s Guide

CW_ITMENU

400 Appendix B: iTool Compound Widgets

Message Value Description / Result

REMOVEITEMS | Object identifier An object was removed from
the container. Menu and
submenu items are removed as

necessary.

SELECT Oorl For checked menu items, the
menu item is displayed as
checked (1) or unchecked (0).

SENSITIVE Oorl The menu item isdisplayed as

sensitive (1) or insensitive (0).

SETPROPERTY Property identifier | If the NAME property changed,
the menu item name is updated
with the new value.

Table 15-1: Messages Understood by CW_ITMENU (Continued)

See “iTool Messaging System” on page 40 for a discussion of observers and
notifications.

4, When amenu item is selected, calls the IDLitTool::DoAction method to
execute the corresponding operation.

Syntax

Result = CW_ITMENU(Parent, U, Target [, /CONTEXT_MENU]
[, UNAME=string] [, UVALUE=value])

Return Value
This function returns the widget 1D of the newly-created pulldown menu.
Arguments

Parent

The widget ID of the parent for the new menu. The parent must be one of the
following:

1. A basewidget.

CW_ITMENU iTool Developer’s Guide

Appendix B: iTool Compound Widgets 401

2. A widget created using the MBAR keyword on atop-level base.
3. A button widget which hasthe MENU keyword set.

Ul

An object reference to the IDLitUI object associated with the iTool. See “ User
Interface Object” on page 341 for information on creating user interface objects.

Target

A string specifying the identifier of an item of class IDLitContainer that contains the
itemsto beincluded in the menu. Target can be either afull identifier or relativeto the
IDLitTool object associated with the user interface object specified by UI.

All items within the Target container must either be of class IDLitContainer or be
operations registered with the IDLitTool object associated with the user interface
object specified by UI.

Keywords

CONTEXT_MENU

Set this keyword to create a context menu instead of a standard pulldown menu. If
this keyword is set, Parent must be awidget of one of the following types:
WIDGET_BASE, WIDGET_DRAW, WIDGET_TEXT, WIDGET_LIST,
WIDGET_PROPERTY SHEET, WIDGET_TABLE, WIDGET_TEXT, or
WIDGET_TREE.

Note
If the CONTEXT_MENU keyword is set, the ACCELERATOR property isignored
for al contained items.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

iTool Developer’s Guide CW_ITMENU

402 Appendix B: iTool Compound Widgets

UVALUE

The “user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueisnot used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget's initial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgetsis actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “ Compound Widgets’ in Chapter 29 of the Building IDL Applications manual for
amore complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ITMENU Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe i Tool messaging system and the callback
mechanism implemented in the user interface creation routine.

Version History
Introduced: 6.1

See Also

Chapter 15, “Creating a Custom iTool Widget Interface”, CW_ITPANEL,
CW_ITSTATUSBAR, CW_ITTOOLBAR, CW_ITWINDOW

CW_ITMENU iTool Developer’s Guide

Appendix B: iTool Compound Widgets 403

CW_ITPANEL

The CW_ITPANEL function creates an i Tool base compound widget that will
contain any user interface panels registered with the specified IDLitUI object’s
associated i Tool. See Chapter 14, “ Creating a User Interface Panel” for information
on user interface panels.

The CW_ITPANEL widget automatically performs the following actions:
1. Creates abase widget to contain the registered user interface panels.

2. Constructs any user interface panels registered with the iTool using tab
widgets. (See ITREGISTER for information on registering a user interface
panel.)

3. Addsitself as an observer of theiTool object. If any changes affecting
registered user interface panels occur, then the panel base widget will be
notified and will automatically update itself. The CW_ITPANEL widget
listens for the foll owing messages:

Message Value Description / Result
ADDUIPANELS | Nameof callback | Add anew panel using the
procedure specified callback procedure.
SHOWUIPANELS | Oor 1 Show (1) or hide (0) the Ul
panel.

Table 15-2: Messages Understood by CW_ITPANEL

See “iTool Messaging System” on page 40 for a discussion of observers and
notifications.
4. Handles events generated by the show/hide panel button.
Resizing CW_ITPANEL Widgets

The CW_ITPANEL widget does not automatically resize itself to the size of its
parent widget. To resize the CW_ITPANEL widget, your event handling code must
call the CW_ITPANEL_RESIZE procedure to specify the new size. The
CW_ITPANEL_RESIZE procedure has the following interface:

CW | TPANEL_RESI ZE, Wdget I D, Ysize

where W dget _I Disthe CW_ITPANEL widget ID, and Ysi ze isthe new height of
the panel.

iTool Developer’s Guide CW_ITPANEL

404 Appendix B: iTool Compound Widgets

Syntax

Result = CW_ITPANEL (Parent, Ul [, ORIENTATION=[O | 1]] [, UNAME=string]
[, UVALUE=valug])

Return Value
This function returns the widget 1D of the newly-created panel widget.
Arguments

Parent

The widget ID of the parent base widget.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 341 for information on creating user interface objects.

Keywords

ORIENTATION

Set this keyword to an integer specifying which side of the parent base the pandl is
on. Possible values are:

e 0: The panel is on the left-hand side of its parent base
e 1. The panel ison the right-hand side of its parent base (this is the default)

Note
The ORIENTATION keyword does not affect where the panel widget is placed; it
only controls how the panel show/hide button is displayed. Place the panel on the
left or right side of the widget interface using normal widget layout techniques.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

CW_ITPANEL iTool Developer’s Guide

Appendix B: iTool Compound Widgets 405

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueisnot used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget's initial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

Keywords to WIDGET_CONTROL and WIDGET _INFO

The widget ID returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “ Compound Widgets’ in Chapter 29 of the Building IDL Applications manual for
amore complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ITPANEL Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe i Tool messaging system and the callback
mechanism implemented in the user interface creation routine.

Version History
Introduced: 6.1

See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITSTATUSBAR, CW_ITTOOLBAR, CW_ITWINDOW

iTool Developer’s Guide CW_ITPANEL

406

Appendix B: iTool Compound Widgets

CW_ITSTATUSBAR

The CW_ITSTATUSBAR function creates an i Tool status bar compound widget that
will contain any status bars registered with the specified IDLitUI object’s associated
iTool. See " Status Messages’ on page 287 for additiona details on status bars.

The CW_ITSTATUSBAR widget automatically performs the following actions:
1. Creates abase widget to contain the status bars.

2. Constructs any status bars registered with the iTool using label widgets. See
IDLitTool::RegisterStatusBarSegment for details.

3. Addsitself as an observer of each status bar segment object. The
CW_ITSTATUSBAR widget listens for the following message:

Message Value Description / Result

MESSAGE | String Change the text of the status bar segment.

Table 15-3: Messages Understood by CW_ITSTATUSBAR

See “iTool Messaging System” on page 40 for a discussion of observers and
notifications.

Tip
By default, iTools include two status bar segments. The StatusM essage and
ProbeStatusM essage methods of the IDLitIMessaging class can be used to
automatically send the MESSAGE callback to the appropriate status bar segment.
See “ Status Messages’ on page 287 for details.

Resizing CW_ITSTATUSBAR Widgets

The CW_ITSTATUSBAR widget does not automatically resizeitself to the size of its
parent widget. To resize the CW_ITSTATUSBAR widget, your event handling code
must call the CW_ITSTATUSBAR_RESIZE procedure to specify the new size. The
CW_ITSTATUSBAR_RESIZE procedure has the following interface:

CW | TSTATUSBAR RESI ZE, W dget I D, Xsize

where W dget _I Disthe CW_ITSTATUSBAR widget ID, and Xsi ze isthe new
width of the status bar.

CW_ITSTATUSBAR iTool Developer’s Guide

Appendix B: iTool Compound Widgets 407

Syntax

Result = CW_ITSTATUSBAR(Parent, Ul [, UNAME=string] [, UVALUE=value]
[, XSIZE=integer])

Return Value

This function returns the widget 1D of the newly-created status bar base widget.

Arguments

Parent

The widget ID of the parent base widget.
Ul

An object reference of the IDLitUI object associated with the iTool. See “ User
Interface Object” on page 341 for information on creating user interface objects.

Keywords

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget's initial user value is undefined.

iTool Developer’s Guide CW_ITSTATUSBAR

408 Appendix B: iTool Compound Widgets

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XSIZE

Set this keyword to an integer specifying theinitial width of the status bar. See
“Resizing CW_ITSTATUSBAR Widgets’ on page 406 for additional details. The
default XSIZE is 640 pixels.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgetsis actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “ Compound Widgets’ in Chapter 29 of the Building IDL Applications manual for
amore complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW _ITSTATUSBAR
Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe iTool messaging system and the callback
mechanism implemented in the user interface creation routine.
Version History
Introduced: 6.1
See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITPANEL, CW_ITTOOLBAR, CW_ITWINDOW

CW_ITSTATUSBAR iTool Developer’s Guide

Appendix B: iTool Compound Widgets 409

CW_ITTOOLBAR

The CW_ITTOOLBAR function creates atoolbar base compound widget. The items
in the toolbar correspond to the operations or manipulators contained in a specified
container object within the OPERATIONS container of the associated iTool. (See
“iTool Object Hierarchy” on page 30 for a description of the iTool object hierarchy.)

The CW_ITTOOLBAR widget automatically performs the following actions:

1. For eachitem in the container, creates either a bitmap button or a
droplist/combobox:

If the item was registered with the DROPLIST _ITEMS property set, a
droplist or combobox is created. If the DROPLIST _EDIT property is set
on the item, an editable combobox widget is included on the toolbar —
otherwise adroplist isincluded. The value of the DROPLIST_INDEX
property is used to select the initial value. The value of the DISABLE
property determinestheinitial sensitivity of the droplist or combobox. See
IDLitTool::RegisterOperation for details on using these properties.

If the item was not registered with the DROPLIST _ITEMS property set, a
bitmap button is created. The value of theitem’sICON property isused for
the bitmap filename (or, if the ICON property is not set, thefile

resour ce/ bi t maps/ new. bnp isused). The value of the DISABLE
property determines the initial sensitivity of the button. The value of the
NAME property is used for the button tooltip.

Registersitself with the specified user interface object.

Addsitself as an observer of the specified container. If any changes occur to
items within the container, then the toolbar will be notified and will
automatically update itself. The CW_ITTOOLBAR widget listens for the
following messages:

Message Value Description / Result

ADDITEMS Object identifier | An object was added to the

container. New buttons or droplists
are added to the toolbar as
necessary.

Table 15-4: Messages Understood by CW_ITTOOLBAR

iTool Developer’s Guide CW_ITTOOLBAR

410 Appendix B: iTool Compound Widgets

Message Value Description / Result

REMOVEITEMS | Object identifier | An object was removed from the
container. Buttons or droplists are
removed from the toolbar as

necessary.

SELECT Oorl For exclusive toolbars, the
exclusive button is displayed as
selected (1) or unselected (0).

SENSITIVE Oorl The button is displayed as sensitive

(D) or insensitive (0).

SETPROPERTY | Property identifier | If NAME property changed, the
button tooltip is updated with the
new value.

SETVALUE String value The droplist or combobox value is
changed to match the new string
value. If theitem is a combobox
and the specified string does not
match an existing list item, the new
value is added at the top.

Table 15-4: Messages Understood by CW_ITTOOLBAR (Continued)

See “iTool Messaging System” on page 40 for a discussion of observers and
notifications.

4. When atoolbar button or droplist/combobox item is selected, callsthe
IDLitTool::DoAction method to execute the corresponding operation.

Syntax

Result = CW_ITTOOLBAR(Parent, Ul, Target [, /[EXCLUSIVE] [, ROW=integer]
[, UNAME=string] [, UVALUE=value])

Return Value

This function returns the widget 1D of the newly-created toolbar base.

CW_ITTOOLBAR iTool Developer’s Guide

Appendix B: iTool Compound Widgets 411

Arguments

Parent

The widget ID of the parent base for the new toolbar.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 341 for information on creating user interface objects.

Target

A string specifying the identifier of an item of class IDLitContainer that contains the
items to be included in the toolbar. Target can either be afull identifier or be relative
to the IDLitTool object associated with the user interface object specified by UI.

All items within the Target container must be operations or manipulators registered
with the IDLitTool object associated with the user interface object specified by Ul.
Keywords

EXCLUSIVE

Set this keyword to create atoolbar with exclusive buttons, where only one button can
be selected at atime, and remains selected until another button is selected. The
default is to create a pushbutton toolbar, which allows multiple selections.

Note
An EXCLUSIVE toolbar cannot contain adroplist or combobox item.

ROW

Set this keyword equal to an integer specifying the number of rows used for laying

out the toolbar buttons and droplists. The default is 1.

Tip
To create a vertical toolbar, set ROW equal to the number of children in the
container specified by Target.

iTool Developer’s Guide CW_ITTOOLBAR

412 Appendix B: iTool Compound Widgets

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The " user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget's initial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgetsis actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Compound Widgets’ in Chapter 29 of the Building IDL Applications manual for
amore complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ITTOOLBAR
Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viatheiTool messaging system and the callback
mechanism implemented in the user interface creation routine.

Version History

Introduced: 6.1

CW_ITTOOLBAR iTool Developer’s Guide

Appendix B: iTool Compound Widgets 413

See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITPANEL, CW_ITSTATUSBAR, CW_ITWINDOW

iTool Developer’s Guide CW_ITTOOLBAR

414 Appendix B: iTool Compound Widgets

CW_ITWINDOW

The CW_ITWINDOW function creates an iTool draw widget that contains an
IDLitWindow object.

The CW_ITWINDOW widget automatically performs the following actions:
1. Createsascrolling draw widget with the specified dimensions.

2. Addsitself asan abserver of the underlying IDLitWindow object. The
CW_ITWINDOW widget listens for the following message:

Message Value Description / Result

CONTEXTMENU | Menu identifier | Change the current context menu.

Table 15-5: Messages Understood by CW_ITWINDOW
See “iTool Messaging System” on page 40 for a discussion of observers and
notifications.

3. Handles al mouse and keyboard events. See “IDLitWindow” in the IDL
Reference Guide manual for alist of the mouse and keyboard callback
methods.

Resizing CW_ITWINDOW Widgets

CW_ITWINDOW does not automatically resizeitself to fit its parent widget. To
resize the widget, your base widget must call the CW_ITWINDOW_RESIZE
procedure with the new size. This procedure has the following interface:

CW | TW NDOW RESI ZE, W dget_I D, Xsize, Ysize

where W dget _| Disthe CW_ITWINDOW widget ID, and Xsi ze and Ysi ze are
the new visible size of the draw window.

Syntax
Result = CW_ITWINDOW(Parent, Ul [, DIMENSIONS=[width, height]]
[, UNAME=string] [, UVALUE=value]
[, VIRTUAL_DIMENSIONS=[width, height]])
Return Value

This function returns the widget 1D of the newly-created iTool draw widget.

CW_ITWINDOW iTool Developer’s Guide

Appendix B: iTool Compound Widgets 415

Arguments

Parent

The widget ID of the parent base widget.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 341 for information on creating user interface objects.

Keywords

DIMENSIONS

Set this keyword to atwo-element vector containing the initial width and height of
the visible portion of the draw widget. The default is [640, 480].

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe 1D of the first widget
with the specified name.

UVALUE

The " user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget's initial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

VIRTUAL_DIMENSIONS

Set this keyword to a two-element vector containing the width and height of the
virtual canvas. The default is to use the same values as DIMENSIONS.

iTool Developer’s Guide CW_ITWINDOW

416 Appendix B: iTool Compound Widgets

Widget Events Returned by the CW _ITWINDOW
Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viatheiTool messaging system and the callback
mechanism implemented in the user interface creation routine.
Version History
Introduced: 6.1
See Also

Chapter 15, “Creating a Custom iTool Widget Interface”, CW_ITMENU,
CW_ITPANEL, CW_ITSTATUSBAR, CW_ITTOOLBAR

CW_ITWINDOW iTool Developer’s Guide

Index

Symbols B
_EXTRA keyword, 98 base class
file reader, 236
A file writer, 260
iTool, 87

Add method, 77

AddByldentifier method, 49

adding data, 49

AddOnNotifyObserver method, 42, 283, 315
AGGREGATE keyword, 77

Aggregate method, 77

manipulator, 201
operation, 148, 161
visudlization, 117
bitmap location, 43
boolean properties, 67
BOOLEAN property datatype, 67

aggr_egati on of _properti&e, 66, 77 ButtonPress, 196
architecture of iTools, 19
attributes, 66 C

automatic data type matching, 59
callback routines
creating, 318, 352

iTool Developer’s Guide 417

418

callback routines (continued)

for user interface, panel, 312

observers, 315

registering, 318, 352
Cleanup method

data operation, 150

file reader, 238

file writer, 262

generalized operation, 163

maniplator, 203

visualization, 122
color properties, 67
COLOR property data type, 67
command line arguments, 97
component framework See framework
component registration, 37
components, 92
compound widgets, iTools, 338, 399, 403, 406,

409, 414

container

data, 52, 53

parameter, 53
creating

file readers, 230, 234

file writers, 254

iTools, 83

manipulators, 189

operations, 140

user interface services, 297

visualization types, 108, 115
cursors, custom, 209
CW_ITMENU function, 399
CW_ITPANEL function, 403
CW _ITSTATUSBAR function, 406
CW_ITTOOLBAR function, 409
CW_ITWINDOW function, 414

D

data
container, 52
management, 47

Index

data (continued)
manager
adding data, 49
described, 49
removing data, 49
objects
described, 52
IDLitDatalDLArray2D, 54
IDLitDatalDLArray3D, 54
IDLitDatalDLImage, 55
IDLitDatal DL ImagePixels, 55
IDLitDatal DL Palette, 55
IDLitDatal DL Polyvertex, 55
IDLitDatal DLV ector, 56
removing, 49
replacing, 394
types
IDLARRAY 2D, 51
IDLARRAY3D, 51
IDLCONNECTIVITY, 51
IDLIMAGE, 51
IDLIMAGEPIXELS, 51
IDLOPACITY_TABLE, 51
IDLPALETTE, 51
IDLPOLYVERTEX, 51
IDLVECTOR, 51
IDLVERTEX, 51
iTool, 48
matching, 59
parameter, 48, 57
property, 65
property See property data types
update mechanism, 61
data-centric operations, 145
DEFAULT property, 214
DESCRIPTION property, 215
DESCRIPTION property attribute, 75
DoAction method
generalized operation, 163
running operations, 391
user interface element, 283

iTool Developer’s Guide

documented classes, 13
DoExecuteUl method, 152
DoSetProperty method, 389
drawable, iTools, 348

E

enumerated list properties, 69
ENUMLIST
property attribute, 75
property datatype, 69
error handling, 99
ErrorMessage method, 291
examples
data operation, 178
file reader, 248
file writer, 272
simpleiTool, 102
simple user interface panel, 322
user interface service, 305
visualization type, 134
Execute method
data operation, 151
described, 143
EXPENSIVE_OPERATION property, 143,
174

F

filereaders
creating, 230, 234
described, 230
example, 248
IDLitReadASCII, 231
IDLitReadBinary, 231
IDLitReadBMP, 231
IDLitReadDICOM, 231
IDLitReadISV, 232
IDLitReadJPEG, 232
IDLitReadJPEG2000, 232
IDLitReadPICT, 232
IDLitReadPNG, 233

iTool Developer’s Guide

419

file readers (continued)
IDLitReadShapefile, 233
IDLitReadTIFF, 233
IDLitReadWAV, 233
predefined, 231
preferences, 80
registering, 89, 245
standard base class, 236
unregistering, 246
file writers
creating, 254
described, 254
example, 272
IDLitWriteASCII, 255
IDLitWriteBinary, 255
IDLitWriteBMP, 255
IDLitWriteEMF, 256
IDLitWriteEPS, 256
IDLitWritel SV, 256
IDLitWriteJPEG, 256
IDLitWriteJPEG2000, 257
IDLitWritePICT, 257
IDLitWritePNG, 257
IDLitWriteTiff, 257
predefined, 255
preferences, 80
registering, 89, 269
standard base class, 260
unregistering, 270
Findldentifiers method, 382
FLOAT property datatype, 67
floating-point integer properties, 67
framework
advantages, 11
architecture, 19
code base, 13
documented vs. undocumented classes, 13
overview
skillsrequired to use, 15

Index

420

G

GetData method to file reader, 242
GetProperty method
and property identifiers, 73
data operation, 153
file reader, 239
file writer, 263
generalized manipulator, 211
generalized operation, 168
visudization, 123
GetTool method, 282

H

help, 44
HIDE property attribute, 75
hierarchy, 30

icon (bitmap) location, 43
ICON property, 175, 215, 269
IDENTIFIER

keyword, 97

property, 175
IDENTIFIER property, 215
identifiers

property, 66, 73

retrieving, 382

strings See object identifiers
IDL widgets, 20, 280, 316, 332
IDLARRAY 2D datatype, 51
IDLARRAY 3D datatype, 51
IDLCONNECTIVITY datatype, 51
IDLgr* graphics objects, 119
IDLIMAGE datatype, 51
IDLIMAGEPIXELS data type, 51
IDLit* visualization objects, 119
IDLitData object, 52
IDLitData objects, 49
IDLitDataContainer object, 52

Index

IDLitDataContainer objects, 49
IDLitDatalDLArray2D data object, 54
IDLitDatalDLArray3D data object, 54
IDLitDatal DL Image data object, 55
IDLitDatal DL ImagePixels data object, 55
IDLitDatal DL Palette data object, 55
IDLitDatal DL Polyvertex data object, 55
IDLitDatal DLV ector data object, 56
IDLitDataOperation class, 148, 156
IDLitDataOperation object, 145
IDLitIMessaging class, 286
IDLitIMessaging object, 40
IDLitManipulator
CommitUndoValues
calling, 206
described, 195
RecordUndoValues

calling, 204, 207

described, 195
IDLitManipulator class, 201, 212
IDLitOpBytscl operation, 142
IDLitOpConvolution operation, 142
IDLitOpCurvefitting operation, 142
IDLitOperation class, 161, 172
IDLitOpSmooth operation, 142
IDLitParameterSet object, 53, 98
IDLitParameterSet objects, 49
IDLitReadASCII file reader, 231
IDLitReadBinary file reader, 231
IDLitReadBMP file reader, 231
IDLitReadDICOM file reader, 231
IDLitReader class, 236
IDLitReadISV file reader, 232
IDLitReadJPEG file reader, 232
IDLitReadJPEG2000 file reader, 232
IDLitReadPICT file reader, 232
IDLitReadPNG file reader, 233
IDLitReadShapefile file reader, 233
IDLitReadTIFF file reader, 233
IDLitReadWAYV file reader, 233
IDLITSYS CREATETOOL function, 100

iTool Developer’s Guide

IDLitToolbase class, 87, 92
IDLitUI class, 282
IDLitUIHourGlass user interface service, 295
IDLitUlOperationPreview user interface ser-
vice, 296
IDLitUI PropertySheet user interface service,
295
IDLitVisAxis visualization type, 109
IDLitVisColorbar visualization type, 109
IDLitVisContour visualization type, 109
IDLitVisHistogram visualization type, 109
IDLitVislmage visualization type, 110, 110
IDLitVisIntVole visualization type, 110
IDLitVislsosurface visualization type, 110
IDLitVisLegend visualization type, 111
IDLitVisLegendltem visualization type, 111
IDLitVisLight visualization type, 111
IDLitVisLineProfile visualization type, 111
IDLitVisMapGrid visualization type, 111
IDLitVisPlot visualization type, 112
IDLitVisPlot3D visualization type, 112
IDLitVisPlotProfile visualization type, 112
IDLitVisPolygon visualization type, 112
IDLitVisPolyline visualization type, 113
IDLitVisRoi visualization type, 113
IDLitVisShapePoints visualization type, 113
IDLitVisShapePolygon visualization type, 113
IDLitVisShapePolyline visualization type, 113
IDLitVisSurface visualization type, 114
IDLitVisText visualization type, 114
IDLitVisualization class, 117, 128
IDLitVisVolume visualization type, 114
IDLitWriteASCI| file writer, 255
IDLitWriteBinary file writer, 255
IDLitWriteBMP file writer, 255
IDLitWriteEMF file writer, 256
IDLitWriteEPS file writer, 256
IDLitWritel SV file writer, 256
IDLitWriteJPEG file writer, 256
IDLitWriteJPEG2000 file writer, 257
IDLitWritePICT file writer, 257

iTool Developer’s Guide

421

IDLitWritePNG file writer, 257
IDLitWriter class, 260, 268
IDLitWriteTIFF file writer, 257
IDLOPACITY_TABLE datatype, 51
IDLPALETTE datatype, 51
IDLPOLYVERTEX datatype, 51
IDLVECTOR datatype, 51
IDLVERTEX datatype, 51
informational messages, 291
Init method
data operation, 146
file reader, 234
file writer, 258
generalized operation, 159
iTool, 85
visudlization, 115
INITIAL_DATA keyword, 98
initializing superclasses, 86, 116, 147, 160,
200, 235, 259
integer properties, 67
INTEGER property datatype, 67
Intelligent Tool SeeiTool
intersection of aggregated properties, 77
IsA method to file reader, 241
ITGETCURRENT function, 381
iTool
class, registering, 95
command line arguments, 97
component framework See framework
creating, 83
data object classes, predefined, 54
data types
composite, 50
described, 48, 50
used by standard i Tools, 50
described
error handling in launch routine, 99
help system, 44
Init method, 85
instantiating, 100
keyword arguments, 97

Index

422

iTool (continued)
launch routine, 97
object class definition file, 85
object classes
documented, 13
reference documentation, 12
undocumented, 13
object hierarchy, 30
simple example, 102
standard base class, 87
system abject, 30
system preferences, 80
user interface architecture, 280
user interface object, 282
iTools
compound widgets
CW_ITMENU, 399
CW_ITPANEL, 403
CW_ITSTATUSBAR, 406
CW_ITTOOLBAR, 409
CW_ITWINDOW, 414
described, 338
drawable area, 348
menus, 344
object model diagram, 21
programmatic control, 380
status bars, 350, 406
toolbars, 346
ITREGISTER, 95, 302

K
keyword arguments, 97

L

linestyle properties, 68
LINESTY LE property datatype, 68
location of bitmap resources, 43

Index

M

macros, 173
manipul ators

associated operation, 194
creating, 189
Cursors
custom, 209
predefined, 203
described, 186
mouse events, 204
predefined, 190
public instance data, 196
standard base class, 201
status bar message, 215
toolbar icon, 215
transient, 202
undo/redo support, 194

menus, iTool, 344
messages

contents, 41
informational, 291
observers, 42
standard, 41
status, 287

messaging system, 20, 40
mouse events, manipulators, 204

N

NAME property attribute, 75
names, parameter, 57
notification
described, 40
message contents, 41
messages, 20
observers, 42
sending, 40
standard messages, 41
system, 40
nSelectionList, 196

iTool Developer’s Guide

O

object descriptors, 29
object identifiers

defined, 27

described, 20

proxy, 29
object reference, retrieving for an iTool, 381
object-oriented programming, 84
observers, 42, 315
OnDataChangeUpdate method, 61, 125
OnDataDisconnect method, 127
operations

creating, 140

data-centric, 145

described, 140

example, 178

IDLitOpBytscl, 142

IDLitOpConvolution, 142

IDLitOpCurvefitting, 142

IDLitOpSmooth, 142

macro support, 173

predefined, 142

registering, 88

standard base class, 148, 161

undo/redo, 143

unregistering, 176

P

panel widget, 313

parameters
datatypes, 48, 57
defined, 57
names, 57
registered, 57
registering, 118

preferences, 64
file readers, 80
file writers, 80
iTool system, 80
system, 80

iTool Developer’s Guide

423

pre-registered properties, 71
presentation layer, 20
ProbeStatusM essage method, 287
programmeatic control of iTools, 380
prompts, 289
PromptUserText method, 290
PromptUserY esNo method, 289
properties
aggregation, 66, 77, 118
attribute values, 386
attributes, 66, 119
defined, 74
DESCRIPTION, 75
ENUMLIST, 75
HIDE, 75
NAME, 75
PROPERTY _IDENTIFIER, 75
SENSITIVE, 75
TYPE, 75
UNDEFINED, 75
USERDEF, 76
VALID_RANGE, 76
data types, 65
BOOLEAN, 67
COLOR, 67
ENUMLIST, 69
FLOAT, 67
INTEGER, 67
LINESTYLE, 68
STRING, 67
SYMBOL, 68
THICKNESS, 69
USERDEF, 67
described, 64
identifiers, 66, 73, 385
interface, 64
intersection of aggregated, 77
pre-registered, 71
registering, 70, 118
registration, 66
retrieving attribute values, 386

Index

424

properties (continued)
retrieving identifiers, 385
retrieving values, 65
setting values, 65, 389
sheet, 64
union of aggregated, 77
update mechanism, 79
property sheet
dider, 76
spinner, 76
text field, 76
PROPERTY _IDENTIFIER property attribute,
75
proxy
identifiers, 29
registration, 38
pSelectionList, 196

R

RecordFinaVaues method, 167
RecordInitialVaues method, 166
RedoOperation method, 170
reference documentation for iTool classes, 12
REGISTER_PROPERTIES keyword, 71
registered parameter, 57
RegisterFileReader method, 245
RegisterFileWriter method, 269
registering

aniTool class, 95

callback routines, 318, 352

file readers, 89, 245

file writers, 89, 269

manipulators, 214

operations, 88, 174

parameters, 118

properties, 70, 118

user interface, services, 302

user interface panels, 314, 320

visualizations, 87
RegisterMani pulator method, 214
RegisterOperation method, 174

Index

RegisterParameter method, 57
RegisterProperty method, 70
RegisterUl Service method, 282, 303
RegisterVisualization method, 130
RegisterWidget method, 283, 314
registration

ITREGISTER procedure, 37

methods, 37

properties, 66

proxy, 38

Register* methods, 37

visualization types, 130
RemoveByldentifier method, 49
REVERSIBLE _OPERATION property, 143,

175

root object, 30

S

Select method, 393
selection visual, 187
sending messages, 40
sending notifications, 40
SENSITIVE property attribute, 75
SET_PROPERTY operation, 194
SetData method, 395
SetData method to file writer, 265
SetProperty method, 390
and property identifiers, 73
data operation, 154
file reader, 240
file writer, 264
generalized manipulator, 211
generalized operation, 168
visualization, 124
SetPropertyAttribute method, 74
SHOW_EXECUTION_UI property, 152, 175,
391
dider, 76
spinner, 76
status bars, iTools, 350
status information, providing, 286

iTool Developer’s Guide

status messages, 287

StatusM essage method, 287
string properties, 67

STRING property datatype, 67

superclassinitialization, 86, 116, 147, 160,

200, 235, 259
symbol properties, 68
SYMBOL property datatype, 68
system object, 30
system preferences, 80

T

text field, property sheet, 76
thickness properties, 69
THICKNESS property data type, 69
toolbars, iTool, 346
TYPE

property, 320

property attribute, 75
TY PES property, 175, 215

U

Ul panel See user interface panel
Ul service See user interface service
UNDEFINED property attribute, 75
undo/redo system, 143
undocumented classes, 13
UndoExecute method, 155
UndoOperation method, 169
union of aggregated properties, 77
unregistering, 92

components, 92

file readers, 246

file writers, 270

generic component, 92

operation, 176

visualization types, 132
UnRegisterUl Service method, 282
UnRegisterWidget method, 283
user defined properties, 67

iTool Developer’s Guide

425

user interface
architecture, 280
custom, 332
elements, 286
panel
callback routines, 312
creation routines, 313
described, 312
example, 322
registering, 314, 320
TY PE property, 320
services
creating, 294, 297
example, 305
executing, 304
function, 297
IDLitUIHourGlass, 295
IDLitUIOperationPreview, 296
IDLitUIPropertySheet, 295
predefined, 295
using, 294
widgets, 332
user interface services, registering, 302
user interfaces, 20
USERDEF
property attribute, 76
property datatype, 67

Vv

VALID_RANGE property attribute, 76
visualization types
creating, 115
defined, 108
example, 134
IDLitShapePolygon, 113
IDLitShapePolyline, 113
IDLitVisAXxis, 109
IDLitVisColorbar, 109
IDLitVisContour, 109
IDLitVisHistogram, 109
IDLitVisimage, 110, 110

Index

426

visualization types (continued)
IDLitVisIntVol, 110
IDLitVislsosurface, 110
IDLitVisLegend, 111
IDLitVisLegenditem, 111
IDLitVisLight, 111
IDLitVisLineProfile, 111
IDLitVisMapGrid, 111
IDLitVisPlot, 112
IDLitVisPlot3D, 112
IDLitVisPlotProfile, 112
IDLitVisPolygon, 112
IDLitVisPolyline, 113
IDLitVisRoi, 113
IDLitVisSurface, 114
IDLitVisText, 114
IDLitVisVolume, 114
predefined, 109
registering, 87, 130
ShapePoints, 113
standard base class, 117
unregistering, 132

VISUALIZATION_TYPE keyword, 101

W
widgets, 280, 332

Index iTool Developer’s Guide

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (4.2 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Medical Imaging in IDL
	Search Documentation

	iTool Developer’s Guide
	Contents
	Overview
	What are iTools?
	What is the iTools Component Framework?
	Advantages of Using the Framework

	About this Manual
	What this Manual is Not

	About the iTools Code Base
	Documented vs. Undocumented Classes

	Skills Required to Use the iTools Component Framework

	Part I: Understanding the iTools Component Framework
	iTool System Architecture
	Overview
	iTools Object Model Diagram
	iTool Object Identifiers
	Proxy Identifiers
	Object Descriptors

	iTool Object Hierarchy
	iTool System Object
	iTool Objects

	Registering Components
	Registration Methods

	iTool Messaging System
	Sending Notifications
	Notification Messages
	Observers

	System Resources
	Icon Bitmaps
	Help System

	Data Management
	Overview
	iTool Data Manager
	Adding Data to the Data Manager
	Removing Data from the Data Manager

	iTool Data Types
	Composite Data Types
	Data Types of iTool Components

	iTool Data Objects
	Data Objects
	Data Containers
	Parameter Sets

	Predefined iTool Data Classes
	Parameters
	Parameter Names
	Parameter Data Types
	Registering Parameters

	Data Type Matching
	Data Update Mechanism

	Property Management
	About the Properties Interface
	What is a Property?
	Properties vs. Preferences
	How are Properties Displayed?
	Setting and Retrieving Property Values
	Property Data Types
	Property Registration
	Property Identifiers
	Property Attributes
	Property Aggregation

	Property Data Types
	User Defined Property Types

	Registering Properties
	Registering a Property
	Pre-Registered Properties

	Property Identifiers
	Property Attributes
	Available Property Attributes

	Property Aggregation
	Working with Aggregated Properties

	Property Update Mechanism
	Properties of the iTools System

	Part II: Using the iTools Component Framework
	Creating an iTool
	Overview
	The iTool Creation Process

	Creating a New iTool Class
	Creating an Init Method
	Creating the Class Structure Definition

	Registering a New Tool Class
	Using ITREGISTER
	Example

	Creating an iTool Launch Routine
	Specifying Command-Line Arguments and Keywords
	Creating Data Objects
	Handling Errors
	Creating an iTool Instance

	Example: Simple iTool
	Class Definition File
	Launch Routine

	Creating a Visualization
	Overview
	The Visualization Type Creation Process

	Predefined iTool Visualization Classes
	Creating a New Visualization Type
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an OnDataChangeUpdate Method
	Creating an OnDataDisconnect Method
	Creating the Class Structure Definition

	Registering a Visualization Type
	Using IDLitTool::RegisterVisualization
	Specifying Useful Properties

	Unregistering a Visualization Type
	Example: Image-Contour Visualization
	Class Definition File

	Creating an Operation
	Overview
	The Operation Creation Process

	Predefined iTool Operations
	Operations and the Undo/Redo System
	Data-Centric Operations
	Generalized Operations

	Creating a New Data-Centric Operation
	How an IDLitDataOperation Works
	Creating an IDLitDataOperation
	Creating an Init Method
	Creating a Cleanup Method
	Creating an Execute Method
	Creating a DoExecuteUI Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an UndoExecute Method
	Creating the Class Structure Definition

	Creating a New Generalized Operation
	How an IDLitOperation Works
	Creating an IDLitOperation
	Creating an Init Method
	Creating a Cleanup Method
	Creating a DoAction Method
	Creating a RecordInitialValues Method
	Creating a RecordFinalValues Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an UndoOperation Method
	Creating a RedoOperation Method
	Creating the Class Structure Definition

	Operations and Macros
	Registering an Operation
	Using IDLitTool::RegisterOperation
	Specifying Useful Properties

	Unregistering an Operation
	Example: Data Resample Operation
	Class Definition File

	Creating a Manipulator
	Overview of Manipulators
	Manipulators and Manipulator Containers
	Manipulator Visuals

	The Manipulator Creation Process
	Predefined iTool Manipulators
	General Manipulators
	Image Manipulators
	Plot and Contour Manipulators
	Surface Manipulators
	Volume Manipulators

	Manipulators and the Undo/Redo System
	Capturing Information for the Undo/Redo System

	Using Manipulator Public Instance Data
	Creating a New Manipulator
	Creating a Manipulator Init Method
	Creating a Cleanup Method
	Creating Mouse Event Methods
	Creating an OnKeyboard Method
	Creating a RegisterCursor Method
	Creating GetProperty or SetProperty Methods
	Creating the Manipulator Class Structure Definition

	Registering a Manipulator
	Using IDLitTool::RegisterManipulator

	Unregistering a Manipulator
	Example: Color Table Manipulator
	Running the Color Table Manipulator Example

	Creating a File Reader
	Overview
	The File Reader Creation Process

	Predefined iTool File Readers
	Creating a New File Reader
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an IsA Method
	Creating a GetData Method
	Creating the Class Structure Definition

	Registering a File Reader
	Using IDLitTool::RegisterFileReader

	Unregistering a File Reader
	Example: TIFF File Reader
	Class Definition File

	Creating a File Writer
	Overview
	The File Writer Creation Process

	Predefined iTool File Writers
	Creating a New File Writer
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating a SetData Method
	Creating the Class Structure Definition

	Registering a File Writer
	Using IDLitTool::RegisterFileWriter

	Unregistering a File Writer
	Example: TIFF File Writer
	Class Definition File

	Part III: Modifying the iTool User Interface
	iTool User Interface Architecture
	Overview
	User Interface Objects

	Using iTool User Interface Elements
	Overview
	Status Messages
	Creating Additional Status Bar Segments

	Prompts
	Informational Messages

	Creating a User Interface Service
	Overview
	Creating and Using a UI Service

	Predefined iTool UI Services
	Creating a New UI Service
	Creating the UI Service Routine
	Creating Supporting User Interface Elements

	Registering a UI Service
	Using ITREGISTER
	Example
	Using the RegisterUIService Method

	Executing a User Interface Service
	Example: Changing a Property Value
	Creating the SrvExample service
	Creating the SrvExample interface
	Creating an operation that calls the service
	Registering the SrvExample service
	Registering the opName operation
	Invoking the opName operation

	Creating a User Interface Panel
	Overview
	Creating and Using a UI Panel

	Creating a UI Panel Interface
	Panel Creation Routines
	About the Panel Widget
	Registering the Panel with the User Interface Object
	Adding Observers
	Create the Widget Hierarchy
	Create Event Handlers

	Creating Callback Routines
	Callback Routine Signature
	Registration of Callback Routines
	Retrieving Widget State Information

	Registering a UI Panel
	Registering the Panel in the iTool Launch Routine
	About the TYPE property

	Example: A Simple UI Panel
	Panel Creation Routine
	Panel Event Handler Routine
	Panel Callback Routine
	Panel Type Specification

	Creating a Custom iTool Widget Interface
	About Custom iTool Widget Interfaces
	Why Create a New Widget Interface?
	What About Using a UI Panel?
	Skills Required to Create an iTool User Interface
	What You Will Need to Create

	Overview: Creating an iTool Interface
	Create or Choose an iTool
	Create the Widget Interface
	Create Event Handlers
	Create Callback Routines
	Create a Cleanup Routine
	Create an iTool User Interface Object
	Create an iTool Launch Routine

	iTool Widget Interface Concepts
	What Are iTool Compound Widgets?
	Special Notes on the iTool Compound Widgets
	Example iTool Widget Interfaces

	Creating the Interface Routine
	Routine Signature
	Error Checking
	Top Level Base
	User Interface Object
	Widget Creation and Layout
	User Interface Registration
	Handling Widget Destruction

	Adding Menus
	Standard Menus
	Modifying Menu Contents
	Resizing Menus

	Adding a Toolbar
	Standard Toolbars
	Modifying Toolbar Contents
	Resizing Toolbars

	Adding an iTool Window
	Window Sizing Keywords
	Modifying Window Contents
	Resizing iTool Windows

	Adding a Status Bar
	Modifying Status Bar Contents
	Resizing Status Bars

	Adding a User Interface Panel
	Modifying User Interface Panel Contents
	Resizing User Interface Panels

	Handling Callbacks
	Callback Routine Signature
	Registration of Callback Routines
	Example Callback Routine

	Handling Resize Events
	Generating Resize Events
	Handling the Resize Event
	Writing a Resize Routine

	Handling Shutdown Events
	Generating Shutdown Events
	Handling the Shutdown Event
	Writing a Cleanup Routine
	Calling the Cleanup Routine

	Creating an iTool Launch Routine
	Register Your User Interface
	Use Your User Interface
	Using an Existing iTool Launch Routine

	Example: a Custom iTool Interface
	Widget Interface Creation Routine
	iTool Class Definition Routine
	iTool Launch Routine

	Controlling iTools from the IDL Command Line
	Overview of iTool Programmatic Control
	How to Control an iTool

	Retrieving an iTool Object Reference
	Retrieving Component Identifiers
	Using the FindIdentifiers Method
	FindIdentifier Examples

	Retrieving Property Information
	Retrieving Property Identifiers
	Property Attribute Information
	Property Value Information
	An Example Property Information Retrieval Routine

	Changing Property Values
	Using the DoSetProperty Method
	Using the SetProperty Method

	Running Operations
	Selecting Items in the iTool
	Example: Selecting an Item Programmatically

	Replacing Data in an iTool
	Using the iTool Creation Routine
	Using the SetData Method

	iTool Compound Widgets
	Overview: iTools Compound Widgets
	CW_ITMENU
	CW_ITPANEL
	CW_ITSTATUSBAR
	CW_ITTOOLBAR
	CW_ITWINDOW

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

